The Taxation and the Attitude towards Risk
Daniela Marinescu, Dumitru Marin, Ioana Ramniceanu
Academy of Economic Studies, Bucharest, Romania
danielamarinescu@hotmail.com, daniela.marinescu@csie.ase.ro,
dumitrumarin@hotmail.com, dumitru.marin@csie.ase.ro,
ioana.ramniceanu@hotmail.com

In this paper we will analyze the behavior of an economic agent that has an initial endowment s_0 and who wants to invest in active with or without risk. The rate of return is given by a random variable \tilde{e} with finite mean and variance. The attitude towards risk is a Von Neumann Morgenstern function. We will determine the optimal portfolio maximizing the expected utility of the final available amount with respect to the percent invested in risky active x, from the initial endowment s_0.

We will analyze the case when there is a tax with the ratio t for the final available amount and so:

$$S^a(e) = (1 - t)S(e)$$

The influence of the modification of the taxation ratio on the invested amount in the risky active is given by:

$$\frac{dx}{dt} = \frac{x}{1-t} + \frac{1+r}{1-r} \cdot \frac{E\left[U^m\left(S^a(\tilde{e})\left(\tilde{e} - r\right)\right)\right]}{E\left[U^m\left(S^a(\tilde{e})\left(\tilde{e} - r\right)^2\right)\right]}$$

The sign of the derivative $\frac{dx}{dt}$ is influenced by the monotonicity of the absolute risk aversion index, $r_a(\lambda) = -\frac{U''(\lambda)}{U'(\lambda)}$.

We will derive the substitution and income effects and we will show how these effects influence the sign of the derivative $\frac{dx}{dt}$.

Finally, we will analyze the case when the Government subsidize the losses using a tax given by $t_r\left(S(\tilde{e}) - S_0\right)$.

Using the monotonicity of the relative risk aversion index $r_r(s) = -s \frac{U''(s)}{U'(s)}$ we will determine the sign of the derivative:

$$\frac{dx}{dt} = \frac{x}{1-t_r} + \frac{r}{1-t_r} \cdot \frac{E\left[U^m\left(S^a(\tilde{e})\left(\tilde{e} - r\right)\right)\right]}{E\left[U^m\left(S^a(\tilde{e})\left(\tilde{e} - r\right)^2\right)\right]}.$$