Chaos in an infinite-dimensional dynamical system

A.G. Ramm
Mathematics Department, Kansas State University,
Manhattan, KS 66506-2602, USA
ramm@math.ksu.edu

Abstract

Let H be a Hilbert space, $A = A^* \geq m > 0$ be a selfadjoint operator in H, possibly unbounded. Consider the following dynamical system:

$$
\dot{u} = -Au + bu, \quad h(t) := b(u(t)) = \frac{(Au, u)}{(u, u)}, \quad u(0) = u_0; \quad \dot{u} = \frac{du}{dt}.
$$

(1)

Here (u, u) is the inner product in H, $u_0 \in D(A)$, $D(A)$ is the domain of A. Let us formulate our basic results:

1. Problem (1) has a unique solution defined for all $t > 0$ and $\|u(t)\| = \|u_0\| \quad \forall t > 0$.

2. The solution can be found analytically:

$$
u(t) = \frac{e^{-tA}u_0}{(1 - 2 \int_0^t h(s)ds)^{1/2}}, \quad h(t) := (Ae^{-tA}u_0, u_0).
$$

(2)

Without loss of generality one may assume that $\|u_0\| = 1$, and then the solution can be rewritten as:

$$
u(t) = \frac{\int_{-\infty}^{\infty} e^{-\tau t}dE_\tau u_0}{(\int_{-\infty}^{\infty} e^{-\tau t}d\rho(s))^{1/2}}, \quad \rho(s) := (E_\tau u_0, u_0),
$$

(3)

where $E_s = E((-\infty, s])$ is the resolution of the identity of A.

3. If the interval $[m, m + \delta]$ does not contain eigenvalues of A and is filled with an absolutely continuous spectrum of of A, and if $E([m, m + \delta])u_0 \neq 0$, then the solution to (1) does not have a strong limit in H and does not remain in any fixed finite-dimensional subspace of H.

In this sense the solution exhibits chaotic behavior.

4. If m is an isolated eigenvalue of A, P_m is the orthoprojector on the corresponding eigenspace H_m of A, and if $P_m u_0 \neq 0$, then the limit $\lim_{t \to \infty} u(t) = \phi$ exists, $\phi \in H_m$, and $\|\phi\| = \|u_0\|$.