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Abstract. We will consider nonlinear holonomy effects -especially the spin dissi-
pation dynamics- arising in the transport of a linear rotator between metric spaces
with different curvature (positive, zero, negative). The extra 3D spin vector current
induced by curvature and curvature change (measurable as precession) provides for
a holonomic attractor called ”Magic Angle Precession” (MAP) that could be rel-
evant to 3D geodetic flows in classical mechanics, quantum physics, and quantum
gravity based on chaotic dissipation. Limitations and instabilities of the spin cur-
rent exchange are assigned to bifurcations at high precession loads as the driving
gauge potential. In the classical range the chaotic dynamics can be verified with
a mechanical toy gyroscope with built-in spin-precession coupling that could also
be modeled by a Chua-type electronic circuit. Transporting vector currents com-
posed by spin and precession is treated by Schwarz-Christoffel triangle maps with
constant Schwarzian derivative and hypergeometric monodromy. In closed loops
or periodic grids with alternating curvature the MAP attractor corresponds to a
quantum state allowing for a lossless spin current transport without reflection. The
Schrödinger hypergeometric quantum mechanical solution corresponds to Pöschl-
Teller type equations with factorization and ladder operators. By pull-back we get
the generalized Gauss linking number density differential form.
Keywords: holonomy, chaotic precession, geometric phase, hypergeometric, curva-
ture, Berry, Chua, quantum gravity, Schrödinger, Pöschl - Teller, Legendre, Gegen-
bauer, Gauss, linking number, spin, magic angle spinning.

1 Introduction

We will compare rotators transported in hyberbolic, flat, and spherical spaces,
where we get an extra 3D vector rotation induced by holonomy, a geodetic
precession from parallel transport on curved paths. Rotated spin systems
are very interesting from many different points of view. Adding a few extra
coupling or damping terms, which is typical for a real system, can lead to
chaotic precession (like a dissipation induced instability or bifurcation [6]),
where it is rather expensive to actively control chaotic motion to obtain the
sufficient stability conditions at the equilibrium points even for relatively
simple gyroscope systems. Transporting rotatable rotators (gyroscopes [8])
likr spinning electrons over metric distortions in curved space or on curved
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Bloch surfaces can result in a highly complex chaotic behavior due to non-
linear holonomy effects in periodic loops [14]. In the classical limit we have
no strong restrictions regarding the number and availability of states, but
in the periodic or quantum case (standing holonomy waves) there are phase
boundary conditions. In this paper we will provide for a general quantum
transmission matching condition, previously called ‘Magic Angle Precession”
(MAP) supporting the transport of a linear rotator between metric spaces
with different curvature [2]. We are looking for spin/precession preconditions
given by or adjusted to a curvature step or metric distortions allowing for a
lossless spin current with minimum reflection, where precession as a gauge
field is driving the spin current.

2 Rotator Mediating or Parallel Transported between

Surfaces with Different Curvature

Taking θ as the precession angle we assume that the rotator is parallel
transported between surfaces with different curvature, where precession from
holonomy can be classified according to the curvature sign (-1,0,+1) [9], [12].
Gyroscopic precession corresponds to the spherical case (subscript s, cur-
vature +1), Thomas precession (well known from special relativity) to the
hyperbolic case (subscript h, curvature -1). Both situation can be simulta-
neously treated by taking conformal mappings onto the flat Poincare disc
(curvature 0), where we consider the real arc lengths given by the integrals
θs =

∫

|dθs| and θh =
∫

|dθh| on the compact Riemann surfaces with confor-
mal metrics

|dθs| =
2 |dξs|

1 + |ξs|2
, |dθh| =

2 |dξh|

1 − |ξh|2
, (1)

ξs or ξh are the complex variables on the Poincare disc, rs = |ξs| and rh = |ξh|
are the radial distances, in spin dynamics often referred to as rapidity. From
Poincare we know that we have the full group of isometries on this disc and
also the sense preserving Möbius transformations PSL(2, R) [13]. On the
Poincare disc with a given center and scale we will first consider the arc
length ratio between hyberbolic, flat, and spherical cases. With rotations
measurable as precession exclusively induced by holonomy (which can be re-
garded as metric distortions [5], see below) we focus on the Möbius inversion
between spherical and hyperbolic space as the fractional linear transforma-
tion connecting the conformal metrics in eq.(1). The correspondent distance
inversion invariant can be written as a the differential product

dθsdθh = drsdrh = 1, (2)

where the arc length differential relation can be extended to an arc length
integral length relation. Eqs.(2) and (1) are fullfilled by the rapidity relation



Geodesic Holonomy Attractor 3

[2]

1

1 − r2
h

=
r2
s

r2
h

= 1 + r2
s , (3)

that provides for

rh = sin θs = tanh θh, (4)

and

rs = sinh θh = tan θs. (5)

With invariant arc lengths and length inversion rhrs = θhθs providing for a

Fig. 1. MAP bifurcation diagram with rs = πj and θ = jα. Smearing effects are
introduced due to phase fluctuations.

mapping condition, the measure characterizing the will be given by the ratio

f(ξ) =

∫

|dξh|
∫

|dθs|
=

rh

θs

=

∫

|dθh|
∫

|dξs|
=

θh

rs

. (6)

Eqs.(4) - (6) provide for the θs and θh MAP conditions [4], [3]

rh

rs

= cos θs =
fθs

rs

, (7)

=
1

cosh θh

=
frh

θh

. (8)

f will represent coupling induced by a metric distortion leading to precession
that can be expressed by a winding number M . For a given constant winding
frh ∝ M in eqs.(7) and (8) (probably due to a periodic boundary or quantum
condition) we are confronted with a chaotic attractor given by the cosine and
hyperbolic cosine map [3] with bifurcation diagram shown in Figure 1.
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3 Spin Triangulation and Hypergeometric Function

Spin and precession will have a triangular vector relation providing for the in-
variant total angular momentum on the tangential path of parallel transport.
Changing curvature could be approached as a metric distortion f acting on
triangular vector relation [2], [5]. We choose the situation where two out of
three angles are identical (As = A = Ah, Bs = B = Bh), whereas the third
angle Ch < C < Cs is different due to holonomy or metric distortion, see
Figure 2. Using wellknown expressions for the triangle functions considered

Fig. 2. The arc lengths of triangles of locally parallel curved surfaces (right) pro-
jected onto the Poincare disk (left). Hyperbolic is red, flat is black, spherical is
blue with curvature −1, 0, +1, respectively. The triangles are locally aligned on
the common arc ch = c = cs (green), where two out of three angles are identical
As = A = Ah, Bs = B = Bh.

here in terms of hypergeometric functions [13], the metric distortion can be
written down more or less explicitly [5]. The metric distortion associated to
a triangle map f is the ratio of the euclidean length element |dθ| at θ = f(z)
to the spherical length element 2|dz|/(1 + |z|2) at z, or to the hyperbolic
length element 2|dz|/(1 − |z|2) at z, depending on whether we have a spher-
ical or hyperbolic triangle. This means, that the precession of the rotator in
eq.(1) just measures the metric distortion. The algebraic solutions are given

by the Gauss hypergeometric function f(z) = 2F1

(

a, b
c

∣

∣

∣
z

)

[5] obeying the

hypergeometric differential (Fuchsian) equation

z(1 − z)
d2f(z)

dz2
+

[

c − (a + b + 1)z
]df(z)

dz
− abf(z) = 0. (9)

By the Riemann mapping theorem there is a conformal mapping sending
the triangle vertices to the points 0, 1, ∞, which are the singularities of
hypergeometric ODE. The behavior of the hypergeometric (Gauss) equation
(9) has three parameters a, b, c related to the singularities θ1, θ2, θ3 at z =
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{p1, p2, p3} by
θ1 = 1 − c,
θ2 = c − a − b,
θ3 = a − b.

(10)

The general context of Hypergeometric functions can be applied to solve
ordinary differential equations by symbolic computing of the Fuchsian form
[1]

f ′′ + p(α)f ′ + qf = 0,
df

dα
= f ′,

d2

dα2
= f ′′, q = −ab = ±ω2

q , q′ = 0, (11)

with p, q ∈ C(α). As a simple test, we get the MAP functions eqs.(7) and
(8) with αs = θs/2 and αh = θh/2

fh =∝
Mαh

cosh αh

, ph = tanhαh, fs ∝
cos αs

Mαs

, ps =
2

αs

. (12)

4 The Schwarzian Derivative

Possible p, q ∈ C(α) can be obtained from the Schwarz criterion [13]. Let
s ∈ C(α) denote a quotient of two distinct solutions of the hypergeomet-
ric (Gauss) equation (9) and call it a Schwarz map for the hypergeometric
equation, then one important criteria given by the Schwarzian derivative [5]

{s, α} =

(

s′′

s′

)′

−
1

2

(

s′′

s′

)2

=
s′′′

s′
−

3

2

(

s′′

s′

)2

= 2q − p′ −
1

2
p2, (13)

which is invariant under all linear fractional transformations, where all closed
paths with a common fixed point give a group of fractional-linear transforma-
tions that acts on the branches of s generating the metric (1). The Schwarzian
derivative is a criterion for the existence and monodromy of a compact Rie-
mannian metric of constant curvature and a criterion for a proper pull-back
transformation. With constant singularities θ′j = 0 we have with q′ = 0 from
eq.(13)

{s, α}′ = −p′′ −
1

2
(p2)′ = 0, p = −

p′′

p′
. (14)

leading to

p ∝ tan(ωqα), p ∝ cot(ωqα) , p ∝ tanh(ωqα), p ∝ coth(ωqα) ,

p ∝ 2/α . (15)

From the metrics (1) with r = |ξ| we get the real transcendental pull-back
relations

zs =
1

1 + r2
s

=
1 + ts

2
=

1

zh

, zh =
1

1 − r2
h

=
1 + th

2
, (16)
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ξ = f(z) p(α) pullback z a b c context

(π − α)/cos(ωqα) −2λ tan(ωqα) (1 + t)/2 λ ± ǫ λ ∓ ǫ 1

2
+ λ MAP

(π − α)/sin(ωqα) 2λ cot(ωqα) (1 − t)/2 λ ± ǫ λ ∓ ǫ 1

2
+ λ Linking Number

(π − α)/cos(ωqα) −2λ tan(ωqα) (1 − t)/2 λ ± ǫ λ ∓ ǫ 1

2
MAP

(π − α)/sin(ωqα) 2λ cot(ωqα) (1 + t)/2 λ ± ǫ λ ∓ ǫ 1

2
Linking Number

(π − α)/cosh(ωqα) 2λ tanh(ωqα) (1 + t)/2 λ ± ǫ λ ∓ ǫ 1

2
+ λ MAP

(π − α)/sinh(ωqα) 2λ coth(ωqα) (1 − t)/2 λ ± ǫ λ ∓ ǫ 1

2
+ λ Linking Number

(π − α)/cosh(ωqα) 2λ tanh(ωqα) (1 − t)/2 λ ± ǫ λ ∓ ǫ 1

2
MAP

(π − α)/sinh(ωqα) 2λ coth(ωqα) (1 + t)/2 λ ± ǫ λ ∓ ǫ 1

2
Linking Number

Table 1. A table listing the hypergeometric solutions to ξ′′ + p(α)ξ′ + qξ = 0 with
θ = 2ωqα, q = −ω2

q = ǫ2 − λ2, t = cos θ.

providing for the transcendental mappings

ts = cos θs, th = cosh θh. (17)

From now on we ommit subscript h and s, which can be directly found from
the hyperbolic or spherical type of the ODE2, see [1] and the list in Table 1.

5 Schrödinger Quantization and Factorization

We assume that the MAP solutions in eq.(12) are based on a conformal
condition handling integral winding numbers on surfaces of constant cur-
vature. Our monodromy-invariant metric description can be extended to
paths of multiple integral extra loops which correspond in physics to quan-
tum numbers and conditions. In one of his celebrated papers [10] Schrödinger
took exactly one of the hypergeometric pull-back function we found ap-
plying the Schwarz criteria in equation (14) and showed how to factorize
with this transcendental transformation the Gauss hypergeometric ODE2.
He was aware that most of the interesting functions occurring in physics
are either special or limiting cases of Gauss’s function and indicated with
z 7→ φ(θ) = cos2(θ/2) = cos2(ωqα) a quadruple of factorizations of the hy-
pergeometric equation. In his transformation t = cos θ = 2φ − 1 it was
important that 0 ≤ φ ≤ 1 and that the independent variable θ is restricted
to π ≥ θ ≥ 0. He then found that

d2f

dθ2
+

(

ω1 cos θ + ω2

sin θ

)

df

dθ
+ ω2

qf = 0,

is factorizable and related to the hypergeometric solution

ω1 = a + b, ω2 = a + b + 1 − 2c, ω2
q = −ab,

which provides for a direct route to the Schrödinger equation and associated
potential with quantization, factorization and corresponding ladder operators
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[1], [13], [10]. With ω1 = ±ω2, sin θ = 2 sin(θ/2) cos(θ/2), and θ = 2ωqα our
spherical solutions with q = ω2

q = ǫ2 − λ2 < 0 correspond to the Gegenbauer

polynomials ξ(t) = Cλ
n(t) = Cλ

±ǫ−λ(t), (see [1]), with associated Legendre

polynomials Pµ
ν (t) (spherical harmonics) where µ = 1

2 − λ, ν = ±ǫ + 1
2 ,

n = ν + µ − 1 leading to the Schrödinger equation of MAP on the disk

d2Ψµ
ν (θh)

dθ2
h

+

[

D

cosh2 θh

− µ2

]

Ψµ
ν (θh) = 0, (18)

where µ2 is the energy eigenvalue. The Pöschl-Teller (PT) type potential

V (θh) = −
D

cosh2 θh

(19)

has potential depth D = ν(ν + 1). There is an explicit connection of the PT
potential with the su(1, 1) and su(2) algebra describing the bending of coordi-
nates in molecules, where θh gives the relative deviation from the equilibrium
position.

6 Generalized Gauss Linking Number Concept

The quantification of the loop current is how to count the Writhe that is equal
to the Linking minus the Twist. The Writhe can be assigned to the Gauss
linking integral, the twist to the integral number of extra loops. Historically,
the Gauss linking concept was limited to flat space but has been recently
extended to higher-dimensional spherically curved surfaces, which provides
for a generalized (curved) electromagnetism, Biot-Savart law, and Maxwell’s
equations (DeTurck and Gluck, Kupferberg [7]). It is easy to see, that the
Gauss linking differential form generalized to higher-dimensional curved sur-
faces fits perfectly to our Fuchsian differential form and provides with the
proper pull-back for the same solutions. According to Kupferberg [7], if the
SO(a, b)-invariant differential form

ω = φ(t)x ∧ y ∧ dx
∧a−1 ∧ dy

∧b−1, t = x · y, (20)

on H+ × H− in R
(a,b) has dydxω = 0, it satisfies the ordinary differential

equation (11) with p-functions according to Table 1, e.g., for f(α) = φ[t(α)]
with pull-back t = sinhα and p = (a + b) tanhα the corresponding ODE’s
are given by

f ′′ + (a + b)(tanhα)f ′ + abf = 0,

(cosh α)2φ′′ + (a + b + 1)(sinhα)φ′ + abφ = 0.
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Fig. 3. A Chua-type model for chaotic quantum transitions, where a local singular-
ity triggers the dissipation of a spin quantum characterized by a winding number
load for j = M . On the top left we have k/M = 2, on the top right we have
k/M = 3, on the bottom left we have k/M = 5, on the bottom right we have
k/M = 8. The blue color indicates the influence of the holonomic coupling term
cos[j(y − z)].

7 Quantum Chaotic Transitions

We are not only interested in the MAP condition but also in the dynamics
of bifurcations or limit cycles given by the cosine map, see Figure 1. The
hypergeometric ODE2 solutions to model the chaotic spin exchange via pre-
cession could be extended to distortion by local coupling singularities. In
physics MAP can represents a special chaotic behavior in the precession an-
gle if the rotor angular velocity is linearly coupled by (an)holonomy to the
precession angular velocity and angle [4]. With metric distortion proportional
to precession (precession angular velocity in a transport process), and pre-
cession proportional to spin, energy proportional to spin would recurrently
conform Einstein’s proposal that energy is proportional to a metric distor-
tion. The linear coupling provides for conic paths and allows spinning up and
controlling the rotor simply by forcing precession at special quantum magic
precession angles. To approximate this behavior with monopole coupling
strength Mθ and nonlinear holonomic control function π cos[j(y − z)] from
gyroscopic precession, we refer to a well known and rather simple system of
coupled differential equations [3], where the geodesic flow of the attractor
can be simulated and conceptually approached by a Chua-type system [11],
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a well known and real-world model of chaotic dynamics given by

dz

dt
= M(y − z) − π cos[j(y − z)] ,

dy

dt
= x − M(y − z) ,

dx

dt
= −y +

x

k
. (21)

Depending on the source strength 1/k of the driving oscillator and the number
of phase singularities given by j/M , MAP shows a characteristic quantum
spin dissipation dynamics given by a kind of winding ratio k/M , which is
coupling strength ∝ 1/M divided by source strength 1/k. For j = M the
phase space dynamics is shown in Figure 3. The differential equation system
eqs.(21) describe chaotic currents, where the nonlinear impedance in Chua’s
original electronic circuit controlling the linear oscillator is a transcendental
function f(z) = π cos[j(y − z)], the holonomic coupling term given by the
total phase minus the Berry geometric phase [4],[3]. MAP can be found in
the z-singularity dz/dt = 0 with θ = y−z and rs = πj and θ = jα, which can
be approached and illustrated if we take the precession angle θ as the gauge
potential term (showing Coulomb type ”charge” and dipole effects) and the
rotor spin as the electric current. Both systems have 3 degrees of freedom (two
voltage y, z, one current x) and 3 energy storage elements (two capacitors
and one inductivity as the rotor angular momentum setting the timescale),
see [3]. In both cases a linear oscillator (precession in MAP) is coupled to a
nonlinear element (holonomy in MAP). The nonlinear element responsible for
chaos and bifurcation is driven by precession, where the geometric coupling
current is delivered by the conductivity term providing for j missing or extra
loops. The geometric phase induced by the curved path of the rotor or
external curvature and part of the coupling increases with precession angle.
Limitations and instabilities of the spin current exchange can be assigned to
geometric phase bifurcations at high precession loads as the driving gauge
potential.

8 Conclusions

MAP attracting a linear quantum state corresponds to a fixed winding num-
ber ratio characterized by closed loop or standing waves and corresponds
to the situation, where spin currents remain intact while crossing the con-
tact boundaries between regions of different curvature. This behavior can
be simulated by Chua-type circuit models, where oscillator or spin currents
are nonlinearly and recurrently coupled by holonomic precession, which is
the driving gauge potential. This provides at strong coupling for a chaotic
linking number density function, which has fixed points, limit cycles, and
bifurcations. It should be noted that the chaotic dynamics can be verified
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with a mechanical toy gyroscope having an in-build linear coupling between
spin and precession [3]. In spatially periodic or loop situations we get a re-
current holonomy effect. In measurement the corresponding geometric phase
effects can be found as precession angles or relative phase shift with respect
to a reference beam in an interference experiment. Interesting applications
for this new approach can be found in atoms or solids providing for closed
loops or a spatially periodic holonomy. This finding could be relevant to the
understanding of lossless (no radiation) nuclear, atomic, solid state quantum
transitions, and large scale gravitational anomalies.
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