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Abstract— A new definition of Adaptive Neuro Fuzzy Systems
is presented in this paper for the identification of unknown
nonlinear dynamical systems. The proposed scheme uses the
concept of Adaptive Fuzzy Systems (AFS) operating in conjunc-
tion with High Order Neural Network Functions (F-HONNFs).
Since the plant is considered unknown, we first propose its
approximation by a special form of an adaptive fuzzy system
and in the sequel the fuzzy rules are approximated by appro-
priate HONNFs. Thus the identification scheme leads up to a
Recurrent High Order Neural Network, which however takes
into account the fuzzy output partitions of the initial AFS. The
proposed scheme does not require a-priori experts’ information
on the number and type of input variable membership functions
making it less vulnerable to initial design assumptions. Weight
updating laws for the involved HONNFs are provided, which
guarantee that the identification error reaches zero exponen-
tially fast. Simulations illustrate the potency of the method and
comparisons with well known benchmarks are given.

I. INTRODUCTION

It is well known that general nonlinear systems are ex-

pressed by nonlinear ordinary differential equations, which

may take the following expression

ẋ = f(x, u) (1)

If we know the mathematical model of the system com-

pletely, then, provided then exists adequate theory, we are

able to control it. In most practical application cases though,

the exact mathematical model of the plant, especially when

it is highly nonlinear, large scale and complex, it is seldom is

known. In those cases we should apply known identification

schemes in order to find a suitable model and then control

the plant in indirect cases, or, simultaneously identify and

control the plant on-line in cases that we apply direct adaptive

control algorithms.

It is well known form the scientific literature, that neural

and fuzzy systems are universal approximators, [1], [2], [3].

They can approximate a large variety of nonlinear dynamical

systems to any desired accuracy provided that sufficient

hidden neurons and training data or fuzzy rules are available.

Recently, the combination of these two different technologies

has given rise to fuzzy neural or neuro fuzzy approaches, that

are intended to capture the advantages of both fuzzy logic and

neural networks. Numerous works have shown the viability

of this approach for system modeling [4] - [12].

The neural and fuzzy approaches are most of the time

equivalent, differing between each other mainly in the struc-

ture of the approximator chosen. Indeed, in order to bridge

the gap between the neural and fuzzy approaches several

researchers introduce adaptive schemes using a class of

parameterized functions that include both neural networks

and fuzzy systems [6] - [12]. Regarding the approximator

structure, linear in the parameters approximators are used in

[10], [13], and nonlinear in [14], [15], [16].

Adaptive control theory has been an active area of research

over the past few years [13]-[30]. The identification proce-

dure is an essential part in any control procedure. In the

neuro or neuro fuzzy adaptive control two main approaches

are followed. In the indirect adaptive control schemes [13]

- [19], first the dynamics of the system are identified and

then a control input is generated according to the certainty

equivalence principle. In the direct adaptive control schemes

[20] - [26] the controller is directly estimated and the control

input is generated to guarantee stability without knowledge of

the system dynamics. Also, many researchers focus on robust

adaptive control that guarantees signal boundness in the

presence of modeling errors and bounded disturbances [27].

In [28] both direct and indirect approaches are presented,

while in [29],[30] a combined direct and indirect control

scheme is used.

Recently [31], [32], high order neural network func-

tion approximators (HONNFs) have been proposed for the

identification of nonlinear dynamical systems of the form

(1), approximated by a Fuzzy Dynamical System. This

approximation depends on the fact that fuzzy rules could

be identified with the help of HONNFs.

In this paper HONNFs are also used for the neuro fuzzy

identification of unknown nonlinear dynamical systems. In

fuzzy or neuro-fuzzy approaches the identification phase

usually consists of two categories: structure identification

and parameter identification. Structure identification involves

finding the main input variables out of all possible, speci-

fying the membership functions, the partition of the input



space and determining the number of fuzzy rules which is

often based on a substantial amount of heuristic observation

to express proper strategy’s knowledge. Most of structure

identification methods are based on data clustering, such as

fuzzy C-means clustering [9], mountain clustering [11], and

subtractive clustering [12]. These approaches require that all

input-output data are ready before we start to identify the

plant. So these structure identification approaches are off-

line.

In the proposed approach structure identification is also

made off-line based either on human expertise or on gathered

data. However, the required a-priori information obtained

by linguistic information or data is very limited. The only

required information is an estimate of the centers of the

output fuzzy membership functions. Information on the input

variable membership functions and on the underlying fuzzy

rules is not necessary because this is automatically estimated

by the HONNFs. This way the proposed method is less

vulnerable to initial design assumptions. The parameter iden-

tification is then easily addressed by HONNFs, based on the

linguistic information regarding the structural identification

of the output part and from the numerical data obtained

from the actual system to be modelled. So, the parameters of

identification model are updated on - line in such a way that

the error between the actual system output and the model

output reaches zero exponentially fast.

We consider that the nonlinear system is affine in the

control and could be approximated with the help of two

independent fuzzy subsystems. Every fuzzy subsystem is

approximated from a family of HONNFs, each one being

related with a group of fuzzy rules. Weight updating laws are

given and we prove that when the structural identification is

appropriate then the error converges very fast to zero.

The paper is organized as follows. Section II presents

preliminaries related to the concept of adaptive fuzzy systems

(AFS) and the terminology used in the remaining paper,

while Section III reports on the ability of HONNFs to act as

fuzzy rule approximators. The new neuro fuzzy representa-

tion of affine in the control dynamical systems is introduced

in Section IV, where the associated weight adaptation laws

are given. Simulation results on the identification of well

known benchmark problems are given in Section V and the

performance of the proposed scheme is compared to another

well known approach of the literature. Finally, Section VI

concludes the work.

II. PRELIMINARIES

In this section we briefly present the notion of adaptive

fuzzy systems and their conventional representation. We are

also introducing the representation of fuzzy systems using the

rule firing indicator functions (RFIF), simply called indicator

functions (IF), which is used for the development of the

proposed method.

A. Adaptive Fuzzy Systems

The performance, complexity, and adaptive law of an

adaptive fuzzy system representation can be quite different

depending upon the type of the fuzzy system (Mamdani

or Takagi-Sugeno). It also depends upon whether the rep-

resentations is linear or nonlinear in its adjustable param-

eters. Suppose that the adaptive fuzzy system is intended

to approximate the nonlinear function f(x). In the mamdani

type, linear in the parameters form, the following fuzzy logic

representation is used [2],[3]:

f(x) =
M
∑

l=1

θlξl(x) = θT ξ(x) (2)

where M is the number of fuzzy rules, θ = (θ1, ..., θM )T ,

ξ(x) = (ξ1(x), ..., ξM (x))T and ξl(x) is the fuzzy basis

function defined by

ξl(x) =

∏n
i=1 µF l

i
(xi)

∑M

l=1

∏n

i=1 µF l
i
(xi)

(3)

θl are adjustable parameters, and µF l
i

are given membership

functions of the input variables (can be Gaussian, triangular,

or any other type of membership functions).

In Tagaki-Sugeno formulation f(x) is given by

f(x) =

M
∑

l=1

gl(x)ξl(x) (4)

where gl(x) = al,0 + al,1x1 + . . . + al,nxn, with xi, i =
1 . . . n being the elements of vector x and ξl(x) being defined

in (3). According to [3], (4) can also be written in the linear

to the parameters form, where the adjustable parameters are

all al,i, l = 1 . . . M, i = 1 . . . n.

From the above definitions it is apparent in both, Mamdani

and Tagaki-Sugeno forms that the success of the adaptive

fuzzy system representations in approximating the nonlinear

function f(x) depends on the careful selection of the fuzzy

partitions of input and output variables. Also, the selected

type of the membership functions and the proper number

of fuzzy rules contribute to the success of the adaptive

fuzzy system. This way, any adaptive fuzzy or neuro-fuzzy

approach, following a linear in the adjustable parameters

formulation becomes vulnerable to initial design assumptions

related to the fuzzy partitions and the membership functions

chosen. In this paper this drawback is largely overcome by

using the concept of rule indicator functions, which are in the

sequel approximated by High order Neural Network function

approximators (HONNFs). This way there is not any need for

initial design assumptions related to the membership values

and the fuzzy partitions of the if part.

B. Fuzzy system description using rule indicator functions

Let us consider the system with input space u ⊂ Rm and

state - space x ⊂ Rn , with its i/o relation being governed

by the following equation

z(k) = f(x(k), u(k)) (5)

where f(·) is a continuous function and k denotes the

temporal variable. In case the system is dynamic the above



equation could be replaced by the following differential

equation

ẋ(k) = f(x(k), u(k)) (6)

By setting y(k) = [x(k), u(k)] , Eq. (5) may be rewritten

as follows

z(k) = f (y(k)) (7)

with y ⊂ Rm+n

In case f in (7) is unknown we may wish to approxi-

mate it by using a fuzzy representation. In this case both

y(k) = [x(k), u(k)] and z(k) are initially replaced by fuzzy

linguistic variables. Experts or data depended techniques may

determine the form of the membership functions of the fuzzy

variables and fuzzy rules will determine the fuzzy relations

between y(k) and u(k). Sensor input data, possibly noisy and

imprecise, enter the fuzzy system, are fuzzified, are processed

by the fuzzy rules and the fuzzy implication engine and are

in the sequel defuzzified to produce the estimated z(k) [2],

[3]. We assume here that a Mamdani type fuzzy system is

used.

Let now Ωl1,l2,...,ln
j1,j2,...,jn+m

be defined as the subset of (x, u)

pairs, belonging to the (j1, j2, ..., jn+m)th input fuzzy patch

and pointing - through the vector field f(·) - to the subset of

z(k), which belong to the (j1, j2, ..., jn+m)th output fuzzy

patch. In other words, Ωl1,l2,...,ln
j1,j2,...,jn+m

contains input value

pairs that are associated through a fuzzy rule with output

values.

In order to present the lemma of Section III, we de-

fine the Indicator function (IF) I l1,l2,...,ln
j1,j2,...,jn+m

of the subset

Ωl1,l2,...,ln
j1,j2,...,jn+m

, that is,

I l1,...,ln
j1,...,jn+m

(x(k), u(k)) =

{

α if (x(k), u(k)) ∈ Ωl1,...,ln
j1,...,jn+m

0 otherwise
(8)

where α denotes the firing strength of the rule.

Define now the following system

z(k) =
∑

z̄l1,...,ln
j1,...,jn+m

× I l1,...,ln
j1,...,jn+m

(x(k), u(k)) (9)

Where z̄l1,...,ln
j1,...,jn+m

∈ Rn be any constant vector consisting

of the centers of the membership functions of each output

variable zi and I l1,...,ln
j1,...,jn+m

(x(k), u(k)) is the RFIF. Then,

according to [31], [32] the system in (9) is a generator for

the fuzzy system (FS).

It is obvious that Eq. (9) can be also valid for dynamic

systems. In its dynamical form it becomes

ẋ(k) =
∑

x̄l1,...,ln
j1,...,jn+m

× I l1,...,ln
j1,...,jn+m

(x(k), u(k)) (10)

Where x̄l1,...,ln
j1,...,jn+m

∈ Rn be again any constant vector

consisting of the centers of fuzzy partitions of every variable

xi and I l1,...,ln
j1,...,jn+m

(x(k), u(k)) is the IF.

III. THE HONNF’S AS FUZZY RULE APPROXIMATORS

The main idea in presenting the main result of this section

lies on the fact that functions of high order neurons are capa-

ble of approximating discontinuous functions; thus, we use

high order neural network functions in order to approximate

the indicator functions I l1,...,ln
j1,...,jn+m

. However, in order the

approximation problem to make sense the space y := x×u
must be compact. Thus, our first assumption is the following:

(A.1) y := x × u is a compact set.

Notice that since y ⊂ ℜn+m the above assumption is

identical to the assumption that it is closed and bounded.

Also, it is noted that even if y is not compact we may

assume that there is a time instant T such that (x(k), u(k))
remain in a compact subset of y for all t < T ; i.e.

if y
T

:= {(x(k), u(k)) ∈ y, k < T} We may replace

assumption (A.1) by the following assumption

(A.2) y
T

is a compact set.

It is worth noticing, that while assumption (A.1) requires

the system in Eq. (6) solutions to be bounded for all ut ∈ U
and x0 ∈ X , assumption (A.2) requires the system in Eq.

(6) solutions to be bounded for a finite time period; thus,

assumption (A.1) requires the system in Eq. (6) to be BIBS

stable while assumption (A.2) is valid for systems that are

not BIBS stable and, even more, for unstable systems and

systems with finite escape times.

We are now ready to show that high order neural net-

work functions are capable of approximating the indicator

functions I l1,...,ln
j1,...,jn+m

Let us define the following high order

neural network functions (HONNFs).

N(x, u; w, L) =

L
∑

k=1

wk

∏

j∈Ik

Φ
dj(k)
j (11)

Where {I1, I2, ..., IL} is a collection of L not-ordered

subsets of {1, 2, ...,m+n}, dj(k) are non-negative integers,

Φj are sigmoid functions of the state or the input and

w := [w1 · · · wL]T are the HONNF weights. Eq. (11) can

also be written

N(x, u; w, L) =

L
∑

k=1

wksk(x, u) (12)

Where sk(x, u) are high order terms of sigmoid functions

of the state and/or input.

The next lemma [31] states that a HONNF of the form in

Eq. (12) can approximate the indicator function I l1,...,ln
j1,...,jn+m

.

Lemma 1: Consider the indicator function I l1,...,ln
j1,...,jn+m

and

the family of the HONNFs N(x, u; w, L). Then for any ǫ > 0
there is a vector of weights wj1,...,jn+m;l1,...,ln and a number

of Lj1,...,jn+m;l1,...,ln high order connections such that

sup
(x,u)∈ȳ

{I l1,...,ln
j1,...,jn+m

(x, u)−

−N(x, u; wj1,...,jn+m;l1,...,ln , Lj1,...,jn+m;l1,...,ln)} < ε

where ȳ ≡ y if assumption (A.1) is valid and ȳ
T
≡ y if

assumption (A.2) is valid.



IV. THE PROPOSED IDENTIFICATION SCHEME

We consider affine in the control, nonlinear dynamical

systems of the form

ẋ = f(x) + G(x) · u (13)

where the state x ∈ Rn is assumed to be completely

measured, the control u is in Rn, f is an unknown smooth

vector field called the drift term and G is a matrix with

columns the unknown smooth controlled vector fields gi,

i = 1, 2, ..., n and G = [g1, g2, . . . , gn]. The above class of

continuous-time nonlinear systems are called affine, because

in (13) the control input appears linear with respect to G. The

main reason for considering this class of nonlinear systems

is that most of the systems encountered in engineering, are

by nature or design, affine. Furthermore, we note that non

affine systems of the form given in (1) can be converted into

affine, by passing the input through integrators, a procedure

known as dynamic extension. The following mild assump-

tions are also imposed on (13), to guarantee the existence

and uniqueness of solution for any finite initial condition

and u ∈ U .

Proposition 1: Given a class U of admissible inputs, then

for any u ∈ U and any finite initial condition, the state

trajectories are uniformly bounded for any finite T > 0 .

Hence, |x(T )| < ∞.

Proposition 2: The vector fields f, gi, i = 1, 2, ..., n are

continuous with respect to their arguments and satisfy a local

Lipchitz condition so that the solution x(t) of (13) is unique

for any finite initial condition and u ∈ U .

We are using an affine in the control fuzzy dynamical

system, which approximates the system in (13) and uses two

fuzzy subsystem blocks for the description of f(x) and G(x)
as follows

f(χ) = Aχ +
∑

f̄ l1,...,ln
j1,...,jn

× I l1,...,ln
j1,...,jn

(χ) (14)

gi(χ) =
∑

(ḡi)
l1,...,ln
j1,...,jn

× I1
l1,...,ln
j1,...,jn

(χ) (15)

where the summation is carried out over the number of

all available fuzzy rules, I, I1 are appropriate fuzzy rule

indicator functions and the meaning of indices •l1,...,ln
j1,...,jn

has

already been described in Section II-B.

According to Lemma 1, every indicator function can be

approximated with the help of a suitable HONNF. Therefore,

every I, I1 can be replaced with a corresponding HONNF as

follows

f(χ) = Aχ +
∑

f̄ l1,...,ln
j1,...,jn

× N l1,...,ln
j1,...,jn

(χ) (16)

ḡi(χ) =
∑

(ḡi)
l1,...,ln
j1,...,jn

× N1
l1,...,ln
j1,...,jn

(χ) (17)

where N, N1 are appropriate HONNFs.

In order to simplify the model structure, since some rules

result to the same output partition, we could replace the NNs

associated to the rules having the same output with one NN

and therefore the summations in (16),(17) are carried out over

the number of the corresponding output partitions. Therefore,

the affine in the control fuzzy dynamical system in (14),

(15) is replaced by the following equivalent affine Recurrent

High Order Neural Network (RHONN), which depends on

the centers of the fuzzy output partitions f̄l and ḡi,l

˙̂χ = Aχ̂ +

Npf
∑

l=1

f̄l × Nl(χ) +

n
∑

i=1

(

Npgi
∑

l=1

(ḡi)l × N1l(χ)

)

ui

(18)

Or in a more compact form

˙̂χ = Aχ̂ + XWS(χ) + X1W1S1(χ)u (19)

Where A is a n × n stable matrix which for simplicity

can be taken to be diagonal as A = diag[a1, a2, ..., an] ,

X, X1 are matrices containing the centres of the partitions

of every fuzzy output variable of f(x) and g(x) respectively,

S(χ), S1(χ) are matrices containing high order combinations

of sigmoid functions of the state χ and W, W1 are matrices

containing respective neural weights according to (18) and

(12). The dimensions and the contents of all the above

matrices are chosen so that XWS(χ) is a n × 1 vector and

X1W1S1(χ) is a n × n matrix. Without compromising the

generality of the model we assume that the vector fields in

(15) are such that the matrix G is diagonal. For notational

simplicity we assume that all output fuzzy variables are

partitioned to the same number, m, of partitions. Under these

specifications X is a n × n · m block diagonal matrix of the

form X = diag(X1, X2, . . . , Xn) with each Xi being an

m-dimensional raw vector of the form

Xi = [ f̄ i
1 f̄ i

2 · · · f̄ i
m ]

where f̄ i
p denotes the centre of the p-th partition of fi.

Also, S(χ) = [ s1(χ) . . . sk(χ) ]
T

, where each si(χ) is

a high order combination of sigmoid functions of the state

variables and W is a n·m×k matrix with neural weights. W
assumes the form W = [ W 1 · · · Wn ]

T
, where each W i

is a matrix
[

wi
j l

]

m×k
. X1 is a n×n·m block diagonal matrix

X1 = diag(1X1, 1X2, . . . , 1Xn) with each 1Xi being an m-

dimensional raw vector of the form

1Xi = [ ḡi,i
1 ḡi,i

2 · · · ḡi,i
m ],

where ḡi i
k denotes the center of the k-th partition of

gii. W1 is a m · n × n block diagonal matrix W1 =
diag(1W 1, 1W 2, . . . , 1Wn), where each 1W i is a column

vector
[

1wi
j l

]

m×1
of neural weights. Finally, S1(χ) is a

n × n diagonal matrix with each diagonal element si(χ)
being a high order combination of sigmoid functions of the

state variables.

We assume the existence of only parameter uncertainty,

so, we can take into account that the actual system (13) can

be modeled by the following neural form

χ̇ = Aχ + XW ∗S(χ) + X1W
∗

1 S1(χ)u (20)



Define now, the error between the identifier states and the

real states as

e = χ̂ − χ (21)

Then from (19) and (21) we obtain the error equation

ė = Ae + XW̃S(χ) + X1W̃1S1(χ)u (22)

Where W̃ = W − W ∗ and W̃1 = W1 − W ∗

1 . Regarding

the identification of W and W1 in (19) we are now able to

state the following theorem.

Theorem 1: Consider the identification scheme given by

(22). The learning law

a) For the elements of W i

ẇi
j l = −f̄ i

jpieisl(χ) (23)

b) For the elements of 1W i

1ẇi
j 1 = −ḡi i

j pieiuisi(χ) (24)

or equivalently 1Ẇ i = −(1Xi)T pieiuisi(χ) with

i = 1, . . . , n, j = 1, . . . , m, l = 1, . . . , k
guarantees the following properties.

• e, χ̂, W̃ , W̃1 ∈ L∞, e ∈ L2

• limt→∞ e(t) = 0, limt→∞

˙̃W (t) = 0,

limt→∞

˙̃W 1(t) = 0

Proof: Consider the Lyapunov function candidate,

V (e, W̃ , W̃1) = 1
2eT Pe + 1

2γ1
tr{W̃T W̃}+

+ 1
2γ2

tr{W̃T
1 W̃1}

Where P > 0 is chosen to satisfy the Lyapunov equation

PA + AT P = −I

Taking the derivative of the Lyapunov function candidate we

get

V̇ (e, W̃ , W̃1) = 1
2 ėT Pe + 1

2eT P ė + 1
γ1

tr{ ˙̃W
T

W̃}+

+ 1
γ2

tr{ ˙̃W
T

1 W̃1} ⇒

V̇ = 1
2eT AT Pe + 1

2ST W̃T XT Pe + 1
2UT ST

1 W̃T
1 XT Pe +

1
2eT PAe+ 1

2eT PXW̃S+ 1
2eT PXW̃1S1U+ 1

γ1
tr{ ˙̃W

T

W̃}+

+ 1
γ2

tr{ ˙̃W
T

1 W̃1} ⇒

V̇ = 1
2eT

(

AT P + PA
)

e +
(

1
2eT PXW̃S + 1

2eT PXW̃S
)

+
(

1
2eT PXW̃1S1U + 1

2eT PXW̃1S1U
)

+ 1
γ1

tr{ ˙̃W
T

W̃}+

+ 1
γ2

tr{ ˙̃W
T

1 W̃1} ⇒

V̇ = − 1
2eT e+eT PXW̃S+eT PXW̃1S1U+ 1

γ1
tr{ ˙̃W

T

W̃}+

+ 1
γ2

tr{ ˙̃W
T

1 W̃1} ⇒

V̇ = − 1
2eT e ≤ 0

when
1

γ1
tr{ ˙̃W

T

W̃} = −eT PXW̃S (25)

1

γ2
tr{ ˙̃W

T

1 W̃1} = −eT PX1W̃1S1u (26)

Then, taking into account the form of W and W1 the above

equations result in the element wise learning laws given in

(23), (24). These laws can also be written in the following

compact form

Ẇ = −γ1X
T PeST (27)

Ẇ1 = −γ2X
T
1 PEUST

1 (28)

Where E and U are diagonal matrices such that E =
diag(e1, . . . en) and U = diag(u1, . . . un).

Using the above Lyapunov function candidate V and

proving that V̇ ≤ 0 all properties of the theorem are assured

[23].

V. EXPERIMENTAL RESULTS

To demonstrate the potency of the proposed scheme we

present two simulation results. One of them is the well known

benchmark “Inverted Pendulum” and the other “Van der pol”

oscillator. Both of them present comparisons of the proposed

method with two well established approaches on adaptive

fuzzy system identification [2] and on the use of RHONN

approximators [35] respectively. The comparison shows off

the minimal parameter requirements of the proposed method

with respect to the traditional method of [2]. It also demon-

strates its functional approximation superiority against both

approaches.

A. Comparison of function approximation abilities on the

well known benchmarks of inverted pendulum and Van der

Pol oscillator

1) Inverted Pendulum: Let the well known system of an

inverted pendulum. Its dynamical equations can assume the

following Brunovsky canonical form [34]

ẋ1 = x2

ẋ2 =
g sin x1 −

mlx2
2 cos x1 sin x1

mC+m

l
(

4
3 − m cos2 x1

mC+m

) +
cosx1

mC+m

l
(

4
3 − m cos2 x1

mC+m

)u (29)

where x1 = θ and x2 = θ̇ are the angle from the

vertical position and the angular velocity respectively. Also,

g = 9.8 m/s2 is the acceleration due to gravity, mc is the

mass of the cart, m is the mass of the pole, and l is the half-

length of the pole. We choose mc = 1 kg, m = 0.1 kg, and

l = 0.5 m in the following simulation. In this case we also

have that |x1| ≤ π/6 and |x2| ≤ π/6.

It is our intention to compare the approximation abilities of

the proposed Neuro-Fuzzy approach with Wang [2] adaptive

Fuzzy approach and RHONN [35]. Eq. (29) is similar with

Eq. (13), so we assume that f(x) and g(x) can be approx-

imated using Wang’s approach and Eq. (2) or alternatively

by the XWS and X1W1S1 term of Eq. (19) in the proposed

approach, or WS and W1S1 for RHONN approach [35]

respectively, . The weight updating laws are chosen to be:

For the Wang approach ([2], page 115 )

θ̇f = −γ1e
T Pbcξ(x) (30)



TABLE I

COMPARISON OF WANG, RHONN AND FHONNF APPROACHES FOR

THE INVERTED PENDULUM WITH 2 HOST.

Wang RHONN FHONNF

MSEx1 0.0456 0.0189 0.0064

MSEx2 0.0530 0.0261 0.0068

θ̇g = −γ2e
T Pbcξ(x)uc (31)

where only the simplified approach, without parameter

projection case was necessary to be used.

For the RHONN approach we use tha adaptive laws, which

are described in [35], page 37.

For the proposed F-HONNF approach we use the adaptive

laws which are described by Eqs. (27) and (28). Numerical

training data were obtained by using Eq. (29) with initial

conditions [x1(0) x2(0) ] = [ π
6 −π

6 ], and a persistently

exciting input u = 1 + 0.8 sin(0.001t).

The approximation of the dynamical equations using

conventional fuzzy system approach requires a very large

number of fuzzy rules for the approximation of the unknown

functions. Choosing 40 or more membership functions for

each variable xi results in very accurate fuzzy representation.

This representation requires 1600 rules, which in turn leads

to a parameter explosion when using an adaptive scheme like

that of Eq. (2) and consequently, it takes plenty of time for

the simulations.

We are using the proposed approach with Eq. (19) to

approximate Inverted Pendulum dynamics. The proposed

Neuro-Fuzzy model was chosen to use 5 output partitions

of f and 5 output partitions of g. The number of high order

sigmoidal terms (HOST) used in HONNF’s were chosen to

be first 2 (s(x1), s(x2)) and secondly 5 (s(x1), s(x2), s(x1)·
s(x2), s

2(x1), s
2(x2)) for two different simulations with

the same benchmark. Therefore, the number of adjustable

weights is 20 or 50 respectively, which is a much smaller

number to that used in the conventional fuzzy approach.

In order our model to be equivalent with regard to other

parameters except the adjustable weights we have chosen

terms γ1Pbc in Eq. (30) and γ1P1 (the updating learning

rates) in Eq. (31) to have the same values. Also, the RHONN

model given from [35] is constructed with the same learning

parameters and number of high order terms with these of

F-HONNF approach. The parameters of the sigmoidal terms

were chosen to be a1 = 0.1, a2 = 6, b1 = b2 = 1 and

c1 = c2 = 0. Fig. (1) and (2) shows the approximation of

states x1 and x2 respectively while fig. (3) and (4) gives the

evolution of errors x1 and x2.

The mean squared error (MSE) for Wang’s, RHONN

and F-HONNF approaches were measured and are shown

in Tables I and II, demonstrating a significant (order of

magnitude) increase in the approximation performance with

the maximum diferrence appearing between Wang’s and F-

HONNF, although in the F-HONNF approach no a-priori

information regarding the inputs is used.
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Fig. 1. Evolution of variable x1 for Wang, RHONN and F-HONNF
approach
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Fig. 2. Evolution of variable x2 for Wang, RHONN and F-HONNF
approach

2) Van der pol: Van der Pol oscillator is usually used as

a simple benchmark problem for testing identification and

control schemes. It’s dynamical equations are given by

ẋ1 = x2

ẋ2 = x2 ·
(

a − x2
1

)

· b − x1 + u (32)

The procedure of the approximation was the same as

that of Inverted Pendulum. So, using the conventional fuzzy

system approach we observe that for very accurate fuzzy

representation [33] requires a very large number of fuzzy

TABLE II

COMPARISON OF WANG, RHONN AND FHONNF APPROACHES FOR

THE INVERTED PENDULUM WITH 5 HOST.

Wang RHONN FHONNF

MSEx1 0.0456 0.0069 0.0021

MSEx2 0.0530 0.0098 0.0020
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rules almost 1500 (27 membership functions used). This

in turn would lead to a parameter explosion like that of

“Inverted Pendulum” case which were discussed before.

The proposed Neuro-Fuzzy model was chosen to have

the same parameters as before except the initial conditions,

[ x1(0) x2(0) ] = [ 1 1 ]. Fig. (5) and (6) shows the

approximation of states x1 and x2, while fig. (7) and (8)

presents the evolution of errors x1 and x2 respectively.

The mean squared error (MSE) for Wang’s, RHONN

and F-HONNF approaches were measured and are shown

in Tables III and IV, demonstrating as before (Inverted

Pendulum case), a significant (order of magnitude) increase

in the approximation performance , although no a-priori

information regarding fuzzy partitions and membership func-

tions of the inputs were used.

Conclusively, the comparison between Wang and F-

HONNF’s leads to a large superiority of F-HONNF’s re-

garding the number of adjustable parameters and the approx-

imation abilities. With respect to the RHONN approach the

proposed F-HONNF approach is also much better although it
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Fig. 5. Evolution of variable x1 for Wang, RHONN and F-HONNF
approach
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Fig. 6. Evolution of variable x2 for Wang, RHONN and F-HONNF
approach

does not present the same large difference as with the Wang’s

approach.

VI. CONCLUSIONS AND FUTURE WORKS

The identification of unknown nonlinear dynamical sys-

tems using a new definition of Adaptive Neuro Fuzzy Sys-

tems was presented in this paper. The proposed scheme

uses the concept of Adaptive Fuzzy Systems operating in

conjunction with High Order Neural Network Functions (F-

HONNFs). Under this scheme the identification is driven

to a Recurrent High Order Neural Network, which however

takes into account the fuzzy output partitions of the initial

TABLE III

COMPARISON OF WANG, RHONN AND FHONNF APPROACHES FOR

VAN DER POL OSCILLATOR WITH 2 HOST.

Wang RHONN FHONNF

MSEx1 0.1038 0.0303 0.0058

MSEx2 0.1401 0.0259 0.0087
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Fig. 7. Approximation Error of variable x1 for Wang, RHONN and F-
HONNF approach
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Fig. 8. Approximation Error of variable x2 for Wang, RHONN and F-
HONNF approach

AFS. The proposed scheme does not require a-priori experts’

information on the number and type of input variable mem-

bership functions making it less vulnerable to initial design

assumptions. Weight updating laws for the involved HON-

NFs are provided, which guarantee that the identification

error reaches zero exponentially fast. Simulations illustrate

the potency of the method by comparing its performance

with this of other well known approaches. Future work will

include the use of the proposed identification scheme as the

first part in control algorithms.

TABLE IV

COMPARISON OF WANG, RHONN AND FHONNF APPROACHES FOR

VAN DER POL OSCILLATOR WITH 5 HOST.

Wang RHONN FHONNF

MSEx1 0.1038 0.0180 0.0013

MSEx2 0.1401 0.0149 0.0018
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