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Abstract— The weight tracking in the identification of 

varying unknown nonlinear systems is examined in this 

paper. The unknown nonlinear system is represented and 

identified by an Adaptive Dynamic Fuzzy Systems (ADFS), 

which operates in conjunction with High Order Neural 

Network Functions (HONNFs) and takes the form of a 

Fuzzy Recurrent High Order Neural Network (F-RHONN). 

Weight updating laws for the involved HONNFs are given, 

which guarantee that the identification error reaches zero 

exponentially fast. The proposed scheme has the ability to 

track very fast any change in the unknown nonlinear system, 

that can be reflected in weight changes of its F-RHONN 

representation. Simulations illustrate the potency of the 

method especially in tracking the changes made in the 

unknown system.  

I. INTRODUCTION

 In dynamical systems the mathematical description of 

the system is required, so that we are able to control it. 

Unfortunately, the exact mathematical model of the plant, 

especially when this is highly nonlinear and complex, is 

rarely known and thus appropriate identification schemes 

have to be applied which will provide us with an 

approximate model of the plant. Recently very efficient 

techniques have been proposed for the identification of 

complicated nonlinear systems using neural networks and 

fuzzy systems. 

 It has been established that neural networks and fuzzy 

inference systems are universal approximators [1], [2] 

that is, they can approximate any nonlinear function to 

any prescribed accuracy provided that sufficient hidden 

neurons and training data or fuzzy rules are available. 

Recently, the combination of these two different 

technologies has given rise to fuzzy neural or neuro fuzzy 

approaches, that are intended to capture the advantages of 

both fuzzy logic and neural networks. Numerous works 

have shown the viability of this approach for system 

modelling [3]-[9], which is the first component of indirect 

adaptive control schemes [10]-[18], where first the 

dynamics of the system are identified and then a control 

input is generated according to the certainty equivalence 

principle. 

In this paper, we consider the problem of 

approximating general nonlinear dynamical systems of 

the form 
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( , )x f x u"!  (1) 

using the concept of Fuzzy Dynamical Systems (FDS) 

operating in conjunction with Recurrent High Order 

Neural Networks (RHONNs). An ADFS approximates 

the function of general nonlinear dynamical systems by 

covering its graph with fuzzy patches in the output state 

space. Each fuzzy rule defines a fuzzy patch and connects 

commonsense knowledge with state-space geometry. F-

RHONNs (or statistical clustering systems) can 

approximate the unknown fuzzy patches from training 

data. These adaptive fuzzy systems approximate a 

function at two levels. At the local level the F-RHONN 

approximates and tunes the fuzzy rules. At the global 

level the rules or patches approximate the function. 

 Recently [19], [20], higher order neural network 

function approximators (HONNFs) have been proposed 

for the identification of nonlinear dynamical systems of 

the form (1), approximated by a Fuzzy Dynamical 

System. In this paper HONNFs are also used for the 

neuro fuzzy identification of unknown nonlinear 

dynamical systems. This approximation depends on the 

fact that fuzzy rules could be identified with the help of 

HONNFs. The same rationale has been employed in [21], 

[22], where a neuro – fuzzy approach for the indirect 

control of unknown systems has been introduced. 

 In fuzzy or neuro-fuzzy approaches the identification 

phase usually consists of two categories: structure 

identification and parameter identification. Structure 

identification involves finding the main input variables 

out of all possible, specifying the membership functions, 

the partition of the input space and determining the 

number of fuzzy rules which is often based on a 

substantial amount of heuristic observation to express 

proper strategy’s knowledge. Most of structure 

identification methods are based on data clustering [23], 

such as fuzzy C-means clustering [6], mountain clustering 

[8], and subtractive clustering [9]. These approaches 

require that all input-output data are ready before we start 

to identify the plant. So these structure identification 

approaches are off-line. 

  In the proposed approach structure identification is 

also made off-line based either on human expertise or on 

gathered data. However, the required a-priori information 

obtained by linguistic information or data is very limited. 

The only required information is an estimate of the 

centers of the output fuzzy membership functions. 

Information on the input variable membership functions 

and on the underlying fuzzy rules is not necessary 

because this is automatically estimated by the HONNFs. 

This way the proposed method is less vulnerable to initial 

design assumptions. The parameter identification is then 
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easily addressed by HONNFs, based on the linguistic 

information regarding the structural identification of the 

output part and from the numerical data obtained from the 

actual system to be modelled. So, the parameters of 

identification model are updated on – line in such a way 

that the error between the actual system output and the 

model output reaches zero exponentially fast. 

 We consider that the nonlinear system is affine in the 

control and could be approximated with the help of two 

independent fuzzy subsystems. Every fuzzy subsystem is 

approximated from a family of HONNFs, each one being 

related with a group of fuzzy rules. Weight updating laws 

are given and we prove that when the structural 

identification is appropriate then the error converges very 

fast to zero. Changes performed in the real system during 

its operation could be reflected to sudden weight changes 

in its F-RHONN representation. The fast convergence of 

the error to zero guarantees also the fast tracking of the 

weight changes.  

 The paper is organized as follows. Section II presents the 

concept of adaptive fuzzy systems (AFS) using rule 

indicator functions and the terminology used in the 

remaining paper, while Section III reports on the ability 

of HONNFs to act as fuzzy rule approximators. The new 

neuro fuzzy representation of affine in the control 

dynamical systems is introduced in Section IV, while the 

adaptive parameter identification is presented in Section 

V, where the associated weight adaptation laws are given. 

Finally, simulation results are given in Section VI , which 

demonstrate the fast weight tracking abilities of the 

proposed scheme.

II. THE CONCEPT OF FUZZY DYNAMICAL SYSTEMS

 Let us consider the system with input space 
mu #$  and state – space nx #$ , with its i/o relation 

being governed by the following equation  

% &( ) ( ), ( )z k f x k u k"  (2) 

where ( )f '  is a continuous function and k  denotes 

the temporal variable. In case the system is dynamic the 

above equation could be replaced by the following 

differential equation 

% &( ) ( ), ( )x k f x k u k"!  (3) 

By setting ( )( ) ( ), ( )y k x k u k"  , Eq. (2) may be 

rewritten as follows 

% &( ) ( )z k f y k"  (4) 

with m ny *#$ .

In case f  in (4) is unknown we may wish to 

approximate it by using a fuzzy representation. In this 

case both ( )y k  and ( )z k  are initially replaced by fuzzy 

linguistic variables. Experts or data depended techniques 

may determine the form of the membership functions of 

the fuzzy variables and fuzzy rules will determine the 

fuzzy relations between ( )y k  and ( )u k . Sensor input 

data, possibly noisy and imprecise measurements, enter 

the fuzzy system, are fuzzified, are processed by the 

fuzzy rules and the fuzzy implication engine and are in 

the sequel defuzzified to produce the estimated ( )z k

(Wang, 1994). We assume here that a Mamdani type 

fuzzy system is used. 

Let now 1 2

1 2

, ,...,

, ,...,
n

n m

l l l

j j j *
+  be defined as the subset of % &,x u

pairs, belonging to the % &
1 2

, , ...,
n m

th
j j j

*
 input fuzzy patch 

and pointing - through the vector field ( )f '  - to the 

subset of ( )z k , which belong to the % &1 2
, , ...,

n

th
l l l  output 

fuzzy patch. In other words, 1 2

1 2

, ,...,

, ,...,
n

n m

l l l

j j j *
+  contains input 

value pairs that are associated through a fuzzy rule with 

specific output values. 

 Also, in this subsection, we are briefly introducing the 

representation of fuzzy systems using the rule firing 

indicator functions (RFIF), or simply indicator functions 

(IF), which is used for the development of the proposed 

method. 

According to the above notation the Indicator Function 

(IF) connected to 1 2

1 2

, ,...,

, ,...,
n

n m

l l l

j j j *
+  is defined as follows:  

% &
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, ,...,
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n
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a if x k u k
I x k u k

otherwise

*

*

, -+.
" /
.0

 (5) 

where a  denotes the firing strength of the rule. 

Define now the following system 

% &1 2 1 2

1 2 1 2

, ,..., , ,...,

, ,..., , ,...,
( ) ( ), ( )n n

n m n m

l l l l l l

j j j j j jz k z I x k u k
* *

" 12  (6) 

Where 1 2

1 2

, ,...,

, ,...,
n

n m

l l l n

j j jz
*
-$  be any constant vector consisting 

of the centres of the membership functions of each output 

variable iz  and % &1 2

1 2

, ,...,

, ,...,
( ), ( )n

n m

l l l

j j jI x k u k
*

 is the IF. Then, 

according to [19], [20] the system in (6) is a generator for 

the fuzzy system (FS). 

 It is obvious that Eq. (6) can be also valid for dynamic 

systems. In its dynamical form it becomes 

% &1 2 1 2

1 2 1 2

, ,..., , ,...,

, ,..., , ,...,
( ) ( ), ( )n n

n m n m

l l l l l l

j j j j j jx k x I x k u k
* *

" 12!  (7) 

Where 1 2

1 2

, ,...,

, ,...,
n

n m

l l l n

j j jx
*
-$  be again any constant vector 

consisting of the centres of fuzzy partitions of every 

variable ix  and % &1 2

1 2

, ,...,

, ,...,
( ), ( )n

n m

l l l

j j jI x k u k
*

 is the IF. 

III. HONNFS AS FUZZY RULE APPROXIMATORS

The main idea in presenting the main result of this 

section lies on the fact that functions of high order 

neurons are capable of approximating discontinuous 

functions; thus, we use high order neural network 

functions in order to approximate the indicator 

functions 1 2

1 2

, ,...,

, ,...,
n

n m

l l l

j j jI
*

. However, in order the approximation 

problem to make sense the space :y x u" 1  must be 

compact. Thus, our first assumption is the following: 

Assumption 1: :y x u" 1  is a compact set. 

Notice that since n my *#$ , the above assumption is 

identical to the assumption that it is closed and bounded. 



Also, it is noted that even if  y  is not compact we may 

assume that there is a time instant T such that 

% &( ), ( )x k u k  remain in a compact subset of  y  for all 

t T3 ; that is if % &4 5: ( ), ( ) ,Ty x k u k y t T" - 3  we may 

replace assumption 1 by the following assumption. 

Assumption 2: Ty  is a compact set. 

It is worth noticing, that while assumption 1 requires 

the system in Eq. (3) solutions to be bounded for all 

( ) Cu k U-  and (0)x X- , assumption 2 requires the 

system in Eq. (6) solutions to be bounded for a finite time 

period; thus, assumption 1 requires the system in Eq. (3) 

to be bounded input bounded state (BIBS) stable while 

assumption 2 is valid for systems that are not BIBS stable 

and, even more, for unstable systems and systems with 

finite escape times. 

Based on the fact that functions of high order neurons 

are capable of approximating discontinuous functions 

[19] and [20] use high order neural network functions 

HONNFs in order to approximate the IF 1 2

1 2

, ,...,

, ,...,
n

n m

l l l

j j jI
*

, a 

HONNF is defined as: 

% & % &

1

( ), ( ); , j

hot

L
d hot

hot j

hot j I

N x k u k w L w
" -

" 62 7  (8) 

where 4 51 2, ,...,hot LI I I I"  (hot: high order terms) is a 

collection of L not-ordered subsets of 4 51,2,...,m n* ,

% &jd hot  are non-negative integers, j6 are sigmoid 

functions of the state or the input, which are the elements 

of the  following vector 

1 1

1 1

( )

( )

( )

( )

n n

n

m n m

s x

s x

s u

s u

*

*

68 9 8 9
: ; : ;
: ; : ;
: ; : ;6

6 " ": ; : ;6: ; : ;
: ; : ;
: ; : ;
6< = < =

" "

" "

 (9) 

Where 
1

( )
1 x

S x
e >? @
A

" A
*

 and ( )1:
T

Lw w w" '' '  are 

the HONNF weights. Eq. (8) can also be written 

% & % &
1

( ), ( ); , ( ), ( )
L

hot hot

hot

N x k u k w L w S x k u k
"

" 2   (10) 

where % &( ), ( )hotS x k u k  are high order terms of 

sigmoid functions of the state and/or input. 

The next lemma [19] states that a HONNF of  the 

form  in Eq. (10) can approximate the indicator function 
1 2

1 2

, ,...,

, ,...,
n

n m

l l l

j j jI
*

.

Lemma 1: Consider the indicator function 1 2

1 2

, ,...,

, ,...,
n

n m

l l l

j j jI
*

and the family of the HONNFs % &( ), ( ); ,N x k u k w L . Then 

for any 0B C  there is a vector of weights 1 1,..., ; ,...,n m nj j l lw *

and a number of 1 1,..., ; ,...,n m nj j l l
L *  high order connections such 

that 

% &
% &

% &

1 2

1 2

1 1 1 1

, ,...,

, ,...,
( ), ( )

,..., ; ,..., ,..., ; ,...,

sup { ( ), ( )

( ), ( ); , }

n

n m

n m n n m n

l l l

j j j
x k u k

j j l l j j l l

y
I x k u k

N x k u k w L B

*

* *

-

A

A 3

where y yD  if assumption 1 is valid and y y
T

D  if 

assumption 2 is valid. 

Let us now keep 1 1,..., ; ,...,n m nj j l l
L *  constant, that is let us 

preselect the number of high order connections, and let us 

define the optimal weights of the HONNF with 
1 1,..., ; ,...,n m nj j l l

L *  high order connections as follows 

% &
% &

% &

1 2

,..., ; ,..., 1 21 1

1 1

, ,...,

, ,...,
( ), ( )

,..., ; ,...,

: arg min sup {| ( ), ( )

( ), ( ); , |}

n

j j l l n mn m n

n m n

l l l

j j j
w R x k u k

j j l l

y

w I x k u k

N x k u k w L B

**

*

E

- -

" 1 A

A 3

and the modelling error  as follows 

% & % &

% &

1 2 1 2

1 2 1 2

1 1 1 1

, ,..., , ,...,

, ,..., , ,...,

,..., ; ,..., ,..., ; ,...,

( ), ( ) ( ), ( )

( ), ( ); ,

n n

n m n m

n m n n m n

l l l l l l

j j j j j j

j j l l j j l l

x k u k I x k u k

N x k u k w L

F
* *

* *

" A

A

It is worth noticing that from Lemma 1, we have that 

% &
% &1 2

1 2

, ,...,

, ,...,
( ), ( )

sup ( ), ( )n

n m

l l l

j j j
x k u k y

x k u kF
*

-

 can be made arbitrarily 

small by simply selecting appropriately the number of 

high order connections. 

Using the approximation Lemma 1, it is natural to 

approximate system in Eq. (7) by the following dynamical 

system 

% &
% & % &1 2 1 1 1 1

1 2

, ,..., ,..., ; ,..., ,..., ; ,...,

, ,...,

1

( ), ( ) ( ), ( ); ,n n m n n m n

n m

l l l j j l l j j l l

j j j

z k

x x k u k N z k u k w L* *

*

* "

12

Let now % &( ) (0), ( )x k x u k  denote the solution in Eq. 

(7) given that the initial state at 0t "  is equal to (0)x

and the input is ( )u k . Similarly we 

define % &( ) (0), ( )z k z u k . Also let 

% & % & % &% &1 2

1 2

, ,...,

, ,...,( ), ( ) ( ), ( ) ( ), ( )n

n m

l l l

j j jz k u k x x k u k z k u kF F
*

" 12
Then, it can be easily shown that 

% & % & % &( ) (0), ( ) ( ) (0), ( ) ( ), ( )z k z u k x k x u k z k u kF" * (11)

Note now that from the approximation Lemma 1, and 

the definition of % &( ), ( )z k u kF  we have that modelling 

error can be made arbitrarily small provided that 

% &( ), ( )z k u k  remain in a compact set (for example y ).

Theorem 1: [19], [20] Consider the FDS in (7) and 

suppose that system in Eq. (3) is its underlying system. 

Assume that either assumptions 1 or 2 hold. Also 

consider the RHONN in [20]. Then, for any 0B C  there 

exists a matrix W E  and a number LE  of high order 

connections such as W W E"  is a generator for the FDS. 

IV.NEURO-FUZZY REPRESENTATION

We consider affine in the control, nonlinear dynamical 

systems of the form 

( ) ( )x f x G x u" * '!  (12) 



where the state nx-$  is assumed to be completely 

measured, the control u  is in m$ , f  is an unknown 

smooth vector field called the drift term and G  is a 

matrix with columns the unknown smooth controlled 

vector fields , 1, ,ig i n" #  and ( )1 2, , , nG g g g" # .

We are using an affine in the control fuzzy dynamical 

system, which approximates the system in (12) and uses 

two fuzzy subsystem blocks for the description of ( )f x

and ( )G x  as follows 

1 1

1 1

, , , ,

, , , ,
ˆ ˆ( ) ( )n n

n n

l l l l

j j f j j
f x Ax f I x" * 12 # #

# #
 (13) 

1 1

1 1

, , , ,

, , , ,
ˆ ( ) ( ) ( )n n

n n

l l l l

ij ij j j g j j
g x g I x" 12 # #

# #
 (14) 

Where A  is a n n1  stable matrix which for simplicity 

can be taken to be diagonal as 

( )1 2, , , , 0n iA diag a a a a" A A A C#  and the summation is 

carried out over the number of all available fuzzy rules, 

,f gI I  are appropriate fuzzy rule indicator functions and 

the meaning of indices 1

1

, ,

, ,
n

n

l l

j j

#

#
  has already been described 

in the previous section. 

According to Lemma 1, every indicator function can 

be approximated with the help of a suitable HONNF. 

Therefore, every ,f gI I  can be replaced with a 

corresponding HONNF as follows 
1 1

1 1

, , , ,

, , , ,
ˆ ˆ( | ) ( )n n

n n

l l l l

f j j f j j
f x W Ax f N x" * 12 # #

# #
 (15) 

1 1

1 1

, , , ,

, , , ,
ˆ ( | ) ( ) ( )n n

n n

l l l l

ij g ij j j g j j
g x W g N x" 12 # #

# #
 (16) 

where ,f gW W  are weights that results from adaptive 

laws which will discussed later, and ,f gN N  are 

appropriate HONNFs. 

So, the optimal approximation of ( )f x  and ( )G x

sub- functions of the dynamical system becomes 
1 1

1 1

, , , ,

, , , ,
( | ) ( )n n

n n

l l l l

f j j f j j
f x W Ax f N xE E" * 12 # #

# #
 (17) 

1 1

1 1

, , , ,

, , , ,
( | ) ( ) ( )n n

n n

l l l l

ij g ij j j g j j
g x W g N xE E" 12 # #

# #
 (18) 

In order to simplify the model structure, since some 

rules result to the same output partition, we could replace 

the NNs associated to the rules having the same output 

with one NN and therefore the summations in (15), (16) 

are carried out over the number of the corresponding 

output partitions. Therefore, the affine in the control 

fuzzy dynamical system in (17), (18) is replaced by the 

following equivalent affine Recurrent High Order Neural 

Network (RHONN), which depends on the centres of the 

fuzzy output partitions l
f  and ,ij lg

% &
1 1 1

ˆ ˆ ( ) ( )
ij

l l

NpgNpf q

f ij g jl
l j l

x Ax f N x g N x u
" " "

G H
" * 1 * 1 'I JI J

K L
2 2 2!  (19) 

Or in a more compact form 

ˆ ˆ ( ) ( )f f f g g gx Ax X W S x X W S x u" * *!  (20) 

Where ,f gX X  are matrices containing the centres of 

the partitions of every fuzzy output variable of ( )f x  and 

( )g x   respectively, ( ), ( )f gS x S x  are matrices containing 

high order combinations of sigmoid functions of the state 
x  and ,f gW W  are matrices containing respective neural 

weights according to (10) and (19). The dimensions and 

the contents of all the above matrices are chosen so that 

( )f f fX W S x  is a 1n1  vector and ( )g g gX W S x  is a n n1

matrix. Without compromising the generality of the 

model we assume that the vector fields in (14) are such 

that the matrix G  is diagonal. For notational simplicity 

we assume that all output fuzzy variables are partitioned 

to the same number, m, of partitions. Under these 

specifications fX  is a n n m1 '  block diagonal matrix of 

the form % &
1 2
, , ,

nf f f fX diag X X X" #  with each 
if

X

being an m-dimensional raw vector of the form 
1 2

i i i i

m

f f f f
X x x x8 9" < =$

where
i

p

f
x  with 1, ,p m" #  denotes the centre of the 

p-th partition of if . Also, ( )1( ) ( ) ( )
T

f kS x s x s x" # ,

where each ( )is x  is a high order combination of sigmoid 

functions of the state variables and fW  is a n m k' 1

matrix with neural weights. fW  assumes the form 

1 n

T

f f f
W W W8 9" < =$ , where each 

if
W  is a matrix 

i

pl

f
m k

w
1

8 9< = . gX  is a n n m1 '  block diagonal matrix 

% &
1 2
, , ,

ng g g gX diag X X X" #  with each 
igX  being an m-

dimensional raw vector of the form 
1 2

i i i i

m

g g g gX x x x8 9" < =$

where
i

k

gx  denotes the centre of the k-th partition of 

iig . gW  is a m n n' 1  block diagonal matrix 

% &
1 2
, , ,

ng g g gW diag W W W" # , where each 
igW  is a column 

vector
1i

p

g
m

w
1

8 9< =  of neural weights. Finally, ( )gS x is a 

n n1  diagonal matrix with each diagonal element ( )is x

being a high order combination of sigmoid functions of 

the state variables. 

V. ADAPTIVE PARAMETER IDENTIFICATION

We assume the existence of only parameter 

uncertainty, so, we can take into account that the actual 

system (12) can be modelled by the following neural form 

( ) ( )f f f g g gx Ax X W S x X W S x uE E" * *!  (21) 

Define now, the error between the identifier states and 

the real states as 

ˆe x x" A  (22) 

Then from (20) and (21) we obtain the error equation 

( ) ( )f f f g g ge Ae X W S x X W S x u" * *% %!  (23) 



Where f f fW W W E" A%  and g g gW W W E" A% . Regarding 

the identification of fW  and gW  in (20) we are now able 

to state the following theorem. 

Theorem 2: Consider the identification scheme given 

by (23). The learning law 

a) For the elements of 
if

W

( ) ( )
i i

pl p

f f i i lw x x p e s x" A!  (24) 

b) For the elements of 
igW

( ) ( )
i i

p p

g g i i i iw x x p e u s x" A!  (25) 

or equivalently % &( ) ( )
i i

T

g g i i i iW x X p e u s x" A!  with 

1, ,i n" # , 1, ,p m" #  and 1, ,l k" #  guarantees the 

following properties. 

2
ˆ, , , ,

lim ( ) 0, lim ( ) 0, lim ( ) 0

f g

t t f t g

e x W W L e L

e t W t W t

M

NM NM NM

- -

" " "

% % 

! !% % 

Proof: Consider the Lyapunov function candidate, 

% & 4 5 4 5
1 2

1 1 1
, ,

2 2 2

T T T

f g f f g gV e W W e Pe tr W W tr W W
@ @

" * *% % % % % %

Where 0P C  is chosen to satisfy the Lyapunov 

equation
TPA A P I* " A

Taking the derivative of the Lyapunov function 

candidate we get 

% &

4 5 4 5
1 2

1 1
, ,

2 2

1 1

T T

f g

T T

f f g g

V e W W e Pe e Pe

tr W W tr W W
@ @

" * *

* *

! % % ! !

! !% % % %

which after substituting Eq. (23) becomes 

% &

4 5
4 5

1

2

1 1

2 2

1 1

2

1

T T T T T T

f f f f f f

T T T T T T

g g g g g g f f

T

g g

V e A P PA e e PX W S S W X Pe

e PX W S u u S W X Pe tr W W

tr W W

@

@

G H" * * * *I J
K L

G H* * * *I J
K L

*

! % %

!% % % %

!% %

 Now since T

f f fe PX W S%  and T

g g ge PX W S u%  are scalars, 

we have that 
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For extracting the adaptive law of the weights. Then, 

taking into account the form of fW  and gW  the above 

equations result in the element wise learning laws given 

in (24), (25). These laws can also be written in the 

following compact form 

1

T T

f f fW X PeS@" A!  (26) 

2

T T

g g gW X PEUS@" A!  (27) 

Where E  and U  are diagonal matrices such that 

% &1, , nE diag e e" #  and % &1, , nU diag u u" # . Finally, the 

Lyapunov function candidate results in 

1
0

2

TV e e" A O!

Since V!  is negative semi definite then we conclude 

that V LM- , which implies that ˆ, , ,f ge x W W LM-% % .

Furthermore, f f fW W W E" *% , g g gW W W E" *%  are also 

bounded. Since V  is a non-increasing function of time 

and bounded from below, the limt V VNM M"  exists; 

therefore, by integrating V!  from 0 to M  we have 

( )2

0

(0)e dt V V

M

MO A 3 MP
which implies that 2e L- .

Since 2e L LM- & , using Barbalat’s Lemma we 

conclude that lim ( ) 0t e tNM " .

Now, using the bounded ness of , ,f gu S S  and the 

convergence of ( )e t  to zero, we have that fW
!% , gW

!%  also 

converges to zero [16]. 

VI. SIMULATION RESULTS

 Our aim is to test the performance of the proposed F-

HONNF scheme in approximating a time-varying model. 

This can be equivalently measured by monitoring the fast 

tracking of any weight changes performed in the F-

RHONN representation of the time varying unkown 

system.  

We assume the existence of only parametric uncertainty. 

Therefore we select an initial second order model of the 

form (21) with optimal weights fW E  and gW E  shown in the 

following tables 1 and 2 respectively, and membership 

centre values randomly selected. The inputs assume the 

persistently exciting form % &1 0.8sin 0.001u t" * .



Table 1

0.6669 0.7848 0.2271 0.3132 0.8488 

0.1654 0.5776 0.3831 0.6733 0.0048 

0.6068 0.5640 0.1076 0.9665 0.6119 

0.0152 0.6603 0.8959 0.4103 0.1181 

0.5613 0.3616 0.3845 0.4701 0.5335 

0.3254 0.3147 0.2569 0.9380 0.0337 

0.7551 0.6089 0.3899 0.6808 0.9781 

0.7822 0.5819 0.8589 0.7045 0.9365 

0.5822 0.4470 0.8773 0.8601 0.3356 

0.5127 0.9641 0.3694 0.9679 0.7290 

Table 2 

0.9993 0.6491 

0.3032 0.5357 

0.4929 0.6519 

0.8544 0.6480 

0.3693 0.1582 

0.4829 0.2186 

The weights of the model change during the simulation 

every 1 second by multiplying the weights with a constant 

value (in this example the weights are doubled every 

second).

In the sequel, we used our Fuzzy-RHONN approach 

given with equation (20) and the appropriate adaptive 

laws for the weights, in order to capture the initial model 

and monitored its performance during its changes.  

For that purpose, we selected a second order Fuzzy-

HONNF with learning rates 1 0.01g " , 2 50g "  and the 

parameters of the sigmoidal terms being 1 20.1, 6a a" " ,

1 2 1b b" "  and 1 2 0c c" " .  The evolution of one state is 

shown in figure 4. It can be observed that by following 

the proposed approach we can have a quite perfect 

approximation of the initial system despite the changes. 
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Figure 1. Approximation of one state of the initial Fuzzy-HONNF model 

with the proposed approach 

VII. CONCLUSIONS

 The weight tracking performance in the identification 

of unknown nonlinear dynamical systems was presented 

in this paper. The identification scheme is based on a new 

definition of Adaptive Fuzzy Systems (AFS) operating in 

conjunction with High Order Neural Network Functions 

(F-HONNFs). Under this scheme the identification is 

driven to a Fuzzy-Recurrent Higher Order Neural 

Network, which however takes into account the fuzzy 

output partitions of the initial AFS. The proposed scheme 

does not require a-priori expert’s information on the 

number and type of input variable membership functions 

making it less vulnerable to initial design assumptions. 

Weight updating laws for the involved HONNFs are 

provided, which guarantee that the identification error 

reaches zero exponentially fast. Simulations illustrate the 

potency of the method in tracking changes performed in a 

time varying nonlinear artificial model.  
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