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Abstract:  This paper presents the possibility of designing a linear
communication channel by modulating chaotic analog systems. After presenting the
general setup, conditions for correct demodulation and linear dynamic input-output
behavior are demonstrated. For a linear dynamic relation between the modulating and
demodulated signals, channel equalization is used to achieve wider bandwidth
transmission. The presented case studies, regarding the Lorenz and Chen systems,
highlight the applicability of the proposed method for high speed digital
communication. The overall performance of the resulting communication system is
analyzed in terms of speed, security and occupied frequency bandwidth. The
concluding remarks point towards some directions in further research.
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1. Introduction

The present contribution aims at characterizing an analog modulation
method to build a wide-band communication channel. The proposed approach
is based on chaos synchronization between the emitter and receiver ends in
order to achieve a supplementary level of security under the standard digital
encryption layer. The general synchronization setup is based on the system
partitioning method, first introduced by Carroll and Pecora in [1]. Considering
some reasonable restrictions for the chaotic system, we develop a method for
the characterization of the input-output relation of the proposed
communication channel, namely between the modulating signal applied at the
emitter end and the demodulated signal obtained at the output of the receiver.
The linear dynamic system that models the studied relation shows the
frequency limitations for the modulating signal. In order to increase the
transmitted signal bandwidth, a feed forward equalizer is proposed and its
efficiency studied. Case studies regarding third order chaotic systems of the
Lorenz [2] and Chen [3] types aim at proving the feasibility of the proposed
method. The Lorenz system, chosen for implementation advantages [4] and
for synchronization simplicity [5-6], proved to be a good prototype for the
proposed method, allowing easy synchronization and demodulation. In order
to apply the general setup to the Chen system, some coefficient modifications
had to be made to allow the proposed demodulation scheme.
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The next section concentrates on the demonstration of the proposed method
in the general case. The error dynamics method is used, leading to the
conclusion that the input — output relation of the proposed channel is linear.
Simulation results, confirming the theoretical solution, are presented in the
third section, for two case studies.

2. General Results

The communication channel based on chaos synchronization is built around
a nonlinear chaotic emitter described by the general state equations:

x'=1(x)

where x denotes the N-dimensional state vector and f:RY - R" is the
nonlinear state transition function.

In order to achieve chaos synchronization, using the emitter subsystem
approach, we presume that the above state equations can be partitioned in the
form:

x'=fu (x1)+f12 (XR)
X, '=1,(x)+1, (XR) X =
y=x
If we choose to transmit the first state variable, x;, the synchronizing
receiver results in the form:

{xl } i R>R; £, :RY 5 R;

Xy | R>RYE, RV 5 RY

iR':fﬂ(iR)-’_f‘zl(y)
where the * signals and functions denote the receiver correspondents of the
emitter ones.
Presuming the receiver has been correctly designed, in the case of
parameter matching (fZl () =1, (), fﬂ () =f () ), the error dynamics is

22

globally asymptotically convergent to zero:
g'=f,(%,)—-f,(xz); &€0)—>0

where the error g( t) =X, (;) -%, ( t) denotes the difference between the emitter

and receiver state vectors.

To achieve transmission of the useful information signal, m(t), a direct
modulation approach is used at the emitter end, by modifying the first state
equation:

xllzfll(xl)+f12(x1e)+m(t)

At the receiver end, demodulation is implemented by appending the
previous receiver state equations with a similar one, without modulation:

il':fll(il)"' IZ(iR)

The demodulated signal is algebraically obtained giving the receiver output
equation:

m(t) = y(t) =X, (1)
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The dynamic time evolution of the demodulated signal is governed by the
resulting nonlinear differential equation, obtained by subtracting the previous
state equations:

m'(t) = f11 (xl)_jil (;Cl)"'flz (XR)_]lz (iR)+m(t)
As we presumed the error dynamics to be globally asymptotically stable, in
the case of parameter matching ( £, () =1.0); £ ()= /.() ), the second

difference converges to zero
Joo (%)= £ (%) >0

After the synchronizing transient, the demodulated signal differential
equation is simplified to the form:

m'(t) = f,,(x) = /1, (%) +m(0)

Assuming the average value of the modulating signal is zero, we can
decompose the algebraic nonlinear function, fi,(.) in a power series around this
value, resulting:

N Ld .
fil(X)_,,Z:;‘n! dxn (0) x

If the nonlinear function, f,(.), is smooth enough and the modulating signal

small, we may neglect the higher order terms, to obtain:

m'(t) = %(0) -m(t)+m(t); mt)=x(t)—X,(t)
X

The resulting linear dynamic system, characterizing the proposed
communication channel based on chaos modulation, is stable if the structural
constant, a, is negative:

a=Y1(0)<0
dx

In the complex frequency domain, the input-output characterization of
proposed communication channel is given by the transfer function:
M(s) 1
M(s) s+a

The obtained result shows that the modulating signal cannot be perfectly
recovered unless the maximum frequency in its spectrum is (much) less than
the structural constant, a. Aiming our results at applications in higher
frequency transmission, we propose a single order equalizer connected in a
feed forward topology. The real zero of the equalizer must compensate the
channel pole, while the pole of the equalizer is chosen at a much larger
frequency, ax, to limit the overall pass band of the communication system.

H,(s)= _sta

V. s+1

The overall communication system is linear, characterized by the transfer
function:

H(s)=

(0%

H,(s)=
s+,
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3. Case Studies
3.1. The Lorenz system

In this particular case, the emitter subsystem is a third order, analogue,
Lorenz type system:

x'=o-(y—x)

y'=p-x—y-xz

z'=x—-f-z+x-y

For a large enough parameter range, this system exhibits chaotic behavior,

useful in ensuring the secrecy the modulating signal. To achieve
synchronization, the y state variable is transmitted to the receiver subsystem,
designed by using the system partitioning method:

I'=o0-(y-%)

B =F-pE+Xey
The second equation, for y', will be introduced later on in the state description
of the receiver for further use in the modulation/demodulation process.

Taking the autonomous case, y = 0, its state equations become linear, with a
state transition matrix of the form:
-oc 0
A =
1 =g

The resulting eigenvalues are real and negative, for positive o and pf,
ensuring global asymptotic stability of the receiver. The error dynamics can be
analyzed by subtracting the receiver equations from their emitter counterparts.
The state errors, & =x—X, & =z-Z2, are described by the dynamic
equations:

g'=—0-¢g
&'=6—pf-&+ey
Due to the fact that all state variables are bounded, it is easy to demonstrate
iteratively that all errors decay exponentially to zero. Thus the proposed
receiver synchronizes with the chaotic emitter. In order to use this
synchronizing setup to transmit an information signal, m(?), by the direct
modulation technique, we add the modulating signal to the second equation of
the emitter:
x'=c-(y—x)
y'=p-x—y—-x-z+m(t)
z'=x—-f-z+x-y
At the receiving end of the communication channel, we demodulate the
received signal, y(7), by subtracting from it the locally recovered second state
variable, J :

~ ~

V'=p-X-y-x-Z
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Figure 1.a The PSD of Figure 1.b The PSD of  Figure 1.c The PSD of the
the modulating signal the chaotic signal for chaotic signal for
amplitude 10 amplitude 20

The error dynamics for the second state variable:
&'=pg—&—(xz-%Z)+m
leads to the differential equation for the demodulated signal:
ﬂ1’:—ﬁz—(z—p)-gl —X-&+m

After the synchronization transient died out, the demodulator equation can

be approximated as follows:
m'=—m+m

This highlights the linear memory character of the resulting communication
channel, which can be characterized by the transfer function:

M(s) 1
M(s) s+l

The dynamic range of the amplitude for the modulating signal must ensure
both linearity of the communication system and the lack of visibility of the
modulating signal in the transmitted chaotic one. In order to track the visibility
of the modulating signal in the transmitted chaotic one, we studied the power
spectral density (PSD) of the transmitted signal, for different amplitudes of the
modulating signal, depicted in figure 1.

As seen from the simulation results, if the amplitude of the modulating
signal is as high as 10, its PSD is not visible in the one of the transmitted
signal. Beginning with amplitudes of the order of magnitude 20, the modulator
line becomes visible in the PSD of the chaotic signal. This gives a dynamic
range of modulating signal amplitude comparable to the amplitudes of the
state variables and transmitted signal, thus large enough for practical
applications.

H(s)=

I rem L
e

¥ L | e em e o e e Ew B L
= = =

Figure 2.a The modulating Figure 2.b The demodulated  Figure 2.c The demodulated
signal signal without equalizer signal with equalizer
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To increase the bandwidth of the transmitted signal, we use for our
equalizer a transfer function of the form:
H(s) = s+1 _ s+1
Vo -s+1 0.01-s+1
In figure 2, we give example results showing the demodulated signal
without and with the feed forward equalizer.

3.2. The Modified Chen system
The Chen system is described by the state equations:
x'=—a-x+a-y
y'=(c—a)x+cy-xz
z'==b-z+x-y
where the standard values for the coefficients are a = 35, =3 and ¢ = 28.

To achieve synchronization, the second state variable must be transmitted
and the synchronizing receiver is built around the first and third state
equations. Due to the fact that the y coefficient in the second state equation, c,
is positive, the proposed demodulation method cannot function since it will
lead to demodulator instability. In order to use our approach on the Chen
system, some coefficient modifications need to be made:

x'=—a-x+a-y
y'=d-x—c-y—-x-z
z'==b-z+x-y

As a consequence of the sign change of the ¢ coefficient, the values for the
other ones have to be modified to achieve chaotic behavior. For instance, a =
15,b=3,c=1and d = 32 is a set of values leading to a chaotic attractor, as
seen from the simulation results given in figure 3, where the 3D system
trajectory suggests chaos.

The resulting receiver is described by:

X'=-a-Xx+a-y
F=—b-Z+%y
In the autonomous case, the receiver state equations are linear and the state

transition matrix is:
-a 0
A:
0 -b

Obviously, the synchronizing receive is globally asymptotically stable, with
negative eigenvalues —a and —b.
The error dynamics, in the case of parameter match, is given by:

L
{51 =-a-g

L
&'==b-g+e-y
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Figure 3 The modified Chen attractor Figure 4 Time evolution of the state
synchronization errors

The state errors, & =x—X , & =z—Z, exponentially converge to zero, with
the time constants —1 /@ and —1 / b.
The demodulator is based on the second state variable:
J'=d-Z-¢-y-%-%
Subtracting from second equation of the emitter, the demodulated signal
dynamics results in the form:
m'=—c-m—(z—-d)-&—X%-&+m

After the synchronization transient, of time length T, = Max(-1/a, -1/ b),
the state errors become negligible, and the time evolution of the recovered
signal can be approximated by:

m'=—c-m+m

The corresponding transfer function results in the form:

Hs= M6 _ 1
M(s) s+c

Following the general method, the feed forward equalizer has the transfer

function:

s+c s+l
Var.-s+1 0.01-s+1

Simulation results confirm the design calculations previously presented. For
the same parameter values as above, the synchronization errors decay
exponentially with the predicted time constants, as presented in figure 4.

The efficiency of the proposed equalizer is highlighted in figure 5, where
the modulating signal and the demodulated one are compared.

T e

:..-‘-l. e Il.rq.-i ey i
Figure 5.a. The Modulatmg signal Figure 5.b. The demodulated
signal, using the equalizer

HE(S) =
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5. Conclusions

We proposed an analog wide-band communication channel based on the
chaos synchronization and direct modulation principles. Using the system
partitioning synchronization and error dynamics methods, we demonstrated, in
a general enough setup that a linear dynamic relation exists between the
modulating signal and its demodulated counterpart. A feed-forward channel
equalization technique ensures that the modulating signals can have large
enough bandwidth, leading to the possibility of high speed digital
communication. The presented case studies highlight the feasibility of the
general method.

Further research is needed to approach noise and parameter mismatch
problems, specific to analog implementation of synchronizing transmissions.
A possible approach can be to extend the use of the communication setup to
digital modulation.
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