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Abstract. Autoresonance is a powerful technique for controlling the amplitude of
nonlinear modes. It is a robust method because, over a broad range of parameters,
it does not depend on the details of the system, nor on the amplitude or exact range
of the sweeping drive. Autoresonance is usually associated with single frequency
mode excitations due to the synchronization and phase lock of various nonlinear
modes with the driving force. Despite this we propose a model of multifrequency
autoresonance which occur in completly integrable systems. This phenomenon is
due to a number of stable invariant tori governed by integrals of motion of the
integrable system. The basic autoresonant effect of phase locking appears here as
Whitham deformations of the invariant tori. This provides also a possibility to
transfer a certain initial n-periodic motion into a given m-periodic motion as a
final state.
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1 Introduction

1. The oscillating frequency of a nonlinear, Duffing-like oscillator changes
with amplitude. If you excite such an oscillator by driving it at its linear fre-
quency, the oscillator’s amplitude will grow only marginally before its shifting
frequency causes it to go out of phase with the drive, after which the oscil-
lator’s amplitude will beat back down to zero. By measuring the oscillator’s
instantenuous frequency and phase, you could use feedback to grow the os-
cillator’s amplitude arbitrarily. But how can you grow the oscillator to high
amplitude without feedback?

A general property of weakly driven, nonlinear oscillator is that, under
certain conditions, they automatically stay in resonance with their drives even
if the parameters of the system vary in time and/or space. This phemomenon
is called autoresonance. A number of applications in physics and technology
is known since 1930s, exploiting autoresonant effect. The most famous are
autogenerators of radio frequency [1] and cyclotron acceleration of relativistic
particles [2]. In recent time more applications has been found in astronomy
and plasma physics [3].

One can easily see a resemblance of the phase locking effect in autoreso-
nant oscillator with adiabatic deformations of completely integrable Hamil-
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tonian systems. The KAM-theory proves this deformation to conserve the
motion over Lioville tori of the system for almost all initial data. The Lioville
tori, in its turn, are governed by the first integrals, which depend now on a
slow variable 7 = et. An analytic desciption of the motion is done by the
well-known Kuzmak-Whitham [4], [1] method. Here the phase shifts of the
quasi-periodic oscillations are strongly matched to the driving frequences,
while the first integral’s evolution is controlled by an averages of the driv-
ing force over basic periods. The latter is done through the solutions of the
Whitham equations, which provide elimination of the ”secular” terms for the
higher-order approximations.

Note that for a Hamiltonian system reduced to canonical action-angle
variables (I,¢) = (I1, ..., In,$1,. .., dn),

{If—ef(l,(;ﬁ,z—:), (1)
¢: ¢0 +Eg(17¢76)7

this procedure is equivalent to classical multi-phase averaging method, as-
cending to H.Poincaré [5].

Apply now multi-phase averaging for integrable systems in a reverse way,
namely, for some given deformation of n-periodic solution find small driving
force, implementing the deformation. More precisely, assume some deforma-
tion of the action-angle variables, which transforms initial n-periodic motion
to a given m-periodic motion during finite slow time interval (t ~ O(e™1)).
In general, this will cause the drive not to be small, moreover the Hamil-
tonian structure will fail. To avoid this, restrict the class of deformations
to those satisfying Whitham equations. Now the resulting driving force ap-
pears to be small and is explicitely controlled by boundary conditions for the
Whitham equations. An auxiliary constraints on the angle variables demon-
strate specific autoresonant features the phase locking and synchronization
with driving force frequences.

Note that the procedure is essentially multi-phase, which was not known
for physically interesting systems. For example, it is possible to drive in
adiabatic way a top-like oscillator from a stable state to some given n-periodic
rotation.

2 Integration method

The finite-gap integration theory ( see, for example [7],[8]) provides a unified
approach to the linearization of the phase flow and is based on the Lax form

of the equations of motion:
dL(\)
— T, AN =0, (2)

where L, A, ¥ = (), I, ¢) are | x | matrices, polynomial in A. Equation (2)
provides an unperturbed system (1), e.g., I =0, ¢ = ¢o. As soon as the Lax
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representation is found, one should construct the ¥-function, also called the
Baker-Akhiezer function, which is a solution of the linear system,

LW = b, 3)
dw
— =AW (4)

Suppose that the determinant of L(X) — I has the form
det(L(N) = uT) = 2 = Pagir(N) = 1 = (A= A1) oo- (A= dagi1). (5)

Then equation p? = Psyi1(X) defines hyperelliptic surface I' of genus g.
Suppose the branch points of I" are real-valued, Ay > Ao > ... > Aygqq,
so that the bands (—oo, Aagt1], - - -, [A1, A3, [A2, A1] form the spectrum of the
operator A in (4).

Fig. 1. The spectrum of the operator A and the basis of cycles a, b.

Choose the canonical basis of cycles on I" as shown at Fig.1 and construct

a basis of normalized holomorphic differentials dwi (p), . .., dwy(p)
[ ) = 2ritn, B = [ danto) (6)
a; bj

Here p is a point of I" “hanging” over X on the sheets C\ (Agg41,A25)U...U
(A3, A2) . The Riemann theta function with characteristics on I" has standard
form

O, 8] (2|B) = Z exp B(B(m +a),m+a)+(z+2mif,m+a)|, (7)
meZ?
B={Bjx},  0[0,0](2|B) = 6(2).

Let df2? be an Abelian differential of the second kind on I' with a principal
part d(v/)) at infinity

LN LN+ fay,
2 P2g+1 ()‘)

dgn

A, (8)
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/dQ:O, U_,-:/d(), i=1,2,...,g. (9)
a b

i i
Theorem 1. ([7]) There exists meromorphic matriz function ¥(p,t) on I\
00, satisfying Lax pair equations

LV =Wh, W= AV, (10)
where i = diag (p1, ..., ) and det(L(X) — ;1) =0, j=1,...,1L

The j-th column of this matriz has the following structure
Olvm](A(p) + Ut + D + o R)8[6,,] (D + (1 — 0)R)
0vm](A(p) + D)6[6,,) (Ut + D + R)

W@ﬁﬁ_{mﬁm

Xetﬂ(p)+ﬁmw(p)’ o

(11)

D D
where A(p) = ([ dwi, ..., [ dw,) is Abelian map on Jac(I'), p is local param-
eter on I', Y, 0m = [Qm, Bm] are theta- characteristics and D, R € CY are
constants. Coefficients Ky, Sm and o = 0,1 are chosen from normalization
conditions at p = 0%, oo™ .

Further we restrict Theorem 1 for the hyperelliptic case, i.e., the function
¥ will be defined on the 2-sheet hyperelliptic surface I'. This is the case for
a number of classical dynamical systems, such as Neumann system, special
case of Kovalevskaya top [7] and others.

The Lioville torus of the system (2) coinsides with the Jacobian Jac(I),
the action-angle variables in (1) are (¢ = 0)

I'= (M, A9,y Aagrn)s (12)
¢(t) =Ut+D.

The non-canonical dynamical variables are expressed through the ¥-matrix.
For example, in the n-periodic reduction of the KdV equation, they can be

represented by zeros of ¥ lying at the points p; = (fyl, v/ Pagi1 (71)), sy Dg =
(Vg5 v/ P2g+1(79))- Then the real variables v1,72, ..., 7, satisfy the Dubrovin

equations [7]
dy; _ 2i/Pogia (75)

—_— = = 1=12,...,9, 13
dt = L0y —w) (13)
J#k

which are equivalent to the initial system (2).

3 Deformations of Lax equations

Introduce small deformation parameter ¢ < 1 and define ”slow time” 7 = &t.
Let the branch points of I depend on slow time

)\_7':)\_7'(7'), j:1,2...,29+1,
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while other components of the W-function are defined exactly as above. The
velocity vector U(7) needs to be redefined since the t - derivative of ¢(t) =
Ut + D is now

do

& =UHTU, =U+0(1), T>0.

It is clear that the ¥ -function deformed in such a way is no longer close to
the initial one.

The way to correct the ”secular terms” ascends to Kuzmak-Whitham
theory of perturbed dynamical systems [4]. The phase correction term here
can be introduced by another Abelian differential df2,, n =1,2,..., such
that

b

a) For p — oo™ the following expansion hold

p
Qu(p,7) = [d2, = N2 £ N2 4 4 egp A2+ 0N 2),
Do
drc; =0, j=1,...,2n—1,
(14)
b)
fdQn:(), mzl,?,,g (15)

am

c) If the differential df2, is real-valued it has exactly g real-valued zeroes
and 2n zeroes which do not lie on the real axis.

Let V be a vector of b-periods of df2,, i.e. V.= (Vi,...,V,), Vi = [ di2,.
bom
Define the deformed ¥ function as follows
[@(p,t,e)]] =

_ { 0[] (A(p) + tU (1) + e 'V (7) + D + cR)0[6,,](D + (1 — 0)R)
Tom 0[0m](tU (1) + e V(1) + D + R)O[ym](A(p) + D)

x exp{t2(p,7) + e ' 2, (p,T) + kmw(D)}, - }

(16)
Here all the components of ¥ -function coincide with those of equation (16
and the Riemann surface I' = I'(7) is given by equation (5). Remind that
now A = A(p,7), B;j = B;;(7) since the surface I" depends on 7.
Assume that deformation of I' = I'(7) is governed by the following
Whitham equation

( rd2p, ) +d2u(p,7)] dNj(1) =0, j=1,2,...,29+1. (17)
A=X(7)

Equations (17) is a self-similar reduction of the well-known quasilinear Whitham

system appearing in the modulation theory for evolution equations of KdV

type ( see [6]). The main reason for the choice of deformation in the form

(16) follows from two basic properties of Abelian integrals in (14), (15).
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Theorem 2. If the branch points satisfy the Whitham equations (17), then
the following equations hold

T 0:d2(p,T) + 0;d2, (p,T) = 0, (18)
7 8,U +8,V =0. (19)

Consider now the action of L and A operators over “deformed eigenfunc-
tion” ¥(p,t,e) (16). By the above choice of deformation, we expect that
equations of the Lax pair will approximate the original ones.

Theorem 3. [12] The function ¥(p,t,e) (16) is meromorphic and single-
valued on I'/oc and satisfies the Lazx pair equations

LW =W, (20)

d
E'I/ =(AN)+ecH\)W. (21)

Here matrices L, A and i are the same as in (10) for the fized 7, H is
rational matriz in \.

In conclusion of the section, we can specify more exactly the form of
perturbed dynamical system (1), which is the compatibility condition of the
Lax pair (20) and (21):

d
SL0) = Lo + L(A+eH) = (A+cH) P = (A+eH) LY,

so that L; + [L, A] = ¢[H, L] and

g+i—1
H,
WTW71 = Z B\ _‘/\ + H07 (22)

s=1

Since the left-hand side here has no poles (22) at the points A = Ag, therefore
[Hs,L] =0, s # 0, which leaves the only matrix Hy in the right-hand side:

Li +[L, A] = e[Hy, L]. (23)

4 Structure of the Whitham deformation

1. Monotonic property. Consider now the properties of solutions of the
Whitham system (14).

(72, +d0p)) || O =0 G122
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The equations (24) are exactly a self-similar reduction of the well-known
quasilinear Whitham system proposed in [6] for asymptotic integration of
KdV equation

(8T75j(A1,...,)\29+1)8x) /\j(X,T):O, ]:1,2,,2q+1 (25)
where S; = —df2,(\)/df ()\)| , {21,825 are integrals on I like (8) and
A=

(14), multiplied by ¢ and x respectively in the ¥ - function formula for KdV
equation, T'=et, X = ex.

A generalization of the hodograph method was proposed by S.P.Tsarev [9]
for an exact integration of the system (25). However, the self-similar system
(24) is much simpler one, so it is possible to give a complete description
of its solutions in a way discussed in [10] - [12]. Earlier the self-similar
solutions of (25) appeared in asymptotics of KdV equations with step-like
initial conditions [13]. Here we apply these results in the context of control
of the dynamical system driven by g-periodic force in the way described in
Section 2. Namely, the following Theorem 4 proved earlier by R.F.Bikbaev
and the author in the context of KdV asymptotics, become useful to prove
the existence of slow deformation of g-periodic motion with given initial and
final states.

Following a notation of [10] - [12] we call a branch point \; a moving point
if 9;A; # 0. It is clear that every equation (24) has two solutions 7 = —{2,,/12
and 0;A; = 0. Remind that all branch points are assumed to be real-valued.

A basic fact of monotonicity of the deformation is established by the
following

Theorem 4. [10] [12] There exists 7o > 0 such that if the point \;(T) is
moving for 0 < T < 19, then

1) all other branch points are immovable O-\;(7) =0, i # j.

2) the point \; moves from right to left along the real azis, 0;\;(T) <0,

2. Awutoresonant features. The properties of the Whitham deforma-
tion discussed above, can prove some principal features of the autoresonance
phenomenon, revealed in this construction. We consider the system (23)

L; + [LaA] = E[H(]:L]a (26)

where the perturbation is defined by (22).

Following [3], first and most important is the possibility to drive the sys-
tem to arbitrary high amplitudes. To prove this, note that (26) is equivalent
to the Dubrovin system (13), where all dynamic variables y; oscillate between
the neighboring branch points on I'(7), i.e., Agj11(7) < v < Agj. Thus the
amplitudes evolve with the slow evolution of A;(et). Theorem 4 shows that
Aj can be moved arbitrary far (we need to reverse time in (26), then evolution
of \; will go from left to right).
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In other words, the system (26) is represented in action-angle variables in
the form, cf. (12),

{I_()\](T),)\Q(T),...,/\2g+1(7')), (27)

ot) =U(T)t+e V(1) + D(1).

This yields another autoresonant property: the nonlinearity of phase (“chirp”)
is small with respect to linear terms. It is due to Whitham equations (18)
and (19) in Theorem 2 that

%q&(t) = U(r) 47U (7) + Vo (1) + O(e) = U(r) + 0(e).

Finally, the phase locking property, i.e. the resonance between eigenfre-
quencies and frequencies of the driving force, is achieved automatically in
(26). This is a consequence of “integrability” of perturbation; the deformed
system has the Lax pair representation (20) and (21) (see Theorem 3), and
its common solution, the ¥-function (16), comes out as a proper deformation
of the original exact ¥-function (11).
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