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Abstract. From some time past our interest was focused to find new possibilities for
characterizing the process of generation of the words by generative systems. In our previ-
ous papers Orman[8] and Orman[9] we have introduced some numerical functions able to
characterize classes of derivations according to a given generative system up to an equiva-
lence. They are referred to as derivational functions. In this paper, firstly we consider
equivalence classes of derivations and we establish a property of symmetry. Secondly, we
shall refer to some problems concerning the reliable systems. Many and very important
results have been obtained especially by A.D. Solovyev and B.V. Gnedenko. In this sense
we refer to some aspects regarding to the problem of the increase of the effectiveness
of stand-by systems as a way in which the stochastic-approximation techniques can be
applied in practice.
Keywords: random variables, Markov chains, transition matrices, stochastic differential
equations, stochastic approximation procedures.
2000 MS Classification: 60J20; 60J10: 60K10, 60K20, 68M15, 68Q45

1 Systems of transmission of information

1.1 Introduction

In the process of transmission of information a very important aspect is that of gene-
ration of the words by a generative system. In our tentative for finding new possibilities to
characterize the process of generation of the words by sequences of intermediate words we
have adopted a stochastic point of view involving Markov chains. Because such sequences
of intermediate words (called derivations) by which the words are generated are finite,
it results that finite Markov chains will be connected to the process. In order that our
discussion should be as general as possible, the derivations are considered according to
the most general class of formal grammars from the so-called Chomsky hierarchy, namely
those that are free of any restrictions and are called phrase-structure grammars.

The novelty that we have introduced consists in the fact that the process of generation
of the words is organized by considering the set of all the derivations according to such a
grammar split into equivalence classes, each of them containing derivations of the same
length (here we are not interested in the internal structure of the intermediate words of
a derivation but only in its length). We remind some basic definitions and notations.

A finite nonempty set is called an alphabet and is denoted by Σ. A word over Σ is a
finite sequence u = u1 · · ·uk of elements in Σ. The integer k ≥ 0 is the length of u and
is denoted by |u|. The word of length zero is called the empty word and is denoted by ε.
If Σ is an alphabet, let us denote by Σ∗ the free semigroup, with identity, generated by
Σ (Σ∗ is considered in relation to the usual operation of concatenation).



Definition 1. A phrase-structure grammar is a system G = (V, Σ, P, σ) where
i V is an alphabet called the total alphabet;
ii Σ ⊆ V is an alphabet the elements of which are called terminal symbols (or letters);
iii P is a finite subset of the Cartesian product [(V \ Σ)∗ \ {ε}] × V ∗. Its elements are
called productions;
iv σ ∈ (V \ Σ) is referred to as the initial symbol.
The elements of V \ Σ are called variables (or nonterminals).

For y and z in V ∗ it is said that y directly generates z, and one writes y ⇒ z if there
exist the words t1, t2, u and v such that y = t1ut2, z = t1vt2 and (u, v) ∈ P . Then,

y is said to generate z and one writes y
∗

⇒ z if either y = z or there exists a sequence
(w0, w1, · · · , wj) of words in V ∗ such that y = w0, z = wj and wi ⇒ wi+1 for each i (we

write
∗

⇒ for the reflexive-transitive closure of ⇒). The sequence (w0, w1, · · · , wj) is called
a derivation of length j and from now on will be denoted by D(j). Because a derivation
of length 1 is just a production we shall suppose that the length of any derivation is ≥ 2.

Now we consider the family D of all derivations according to our generative system.
Let Dx be the class of derivations of length x in D.

1.2 The Markov dependence case

Now we consider that a word is in a random process of generation, the equivalence
classes of derivations being connected into a simple Markov chain. Obviously, it can or
cannot be generated into the equivalence class Dx. Now we take into consideration only
the case when a word cannot be generated by an equivalence class of derivations. Thus,
if it is not generated by the class Dx, x ≥ 2, then it will be generated by the class Dx−1

with probability q and by the class Dx+1 with probability p = 1− q. Relating to the first
and the last classes we suppose that it can or cannot be generated by them.

But for the case when it is not generated we put the following supplemental condi-
tions:

1. If it is not generated by the first class D2 then, it will be certainly generated by
the next class.

2. If it is not generated by the last class Dn then, it will be certainly generated by
the last but one.

We refer to such a way for generating words as being a fork-join generation procedure.
For the other classes Dx, 2 < x < n, we suppose that a word, being in each of them, is
subject to a fork-join generation procedure.

Four cases arise:
i The word will be generated by the first class and the last;
ii it will be generated by the first class but it will be not generated by the last;
iii it will be not generated by the first class but it will be generated by the last;
iv it will be not generated both by the first class and the last class.

For each of these we determine the two-step transition matrix and we come to the
following result:

I. The rows of rank i = 3, 4, · · · , n − 3 contain, each of them, the triplet of elements
q2, 2pq, p2 disposed with q2 and p2 on two diagonals to the left and respective to the
right of the main diagonal which contains the element 2pq.

II. The first two and the last two rows are different from a case to another.
Thus, for these rows we have:

• In the first case: p11 = pn−1 n−1 = 1, p21 = q, p22 = pn−2 n−2 = pq, p24 =
= p2, pn−2 n−4 = q2, pn−2 n−1 = p.

• In the second case: p11 = 1, p21 = pn−1 n−3 = q, pn−1 n−1 = p, p22 = pq, p24 =
= p2, pn−2 n−4 = q2, pn−2 n−2 = p + qp.

• In the third case: p11 = q, p13 = pn−2 n−1 = p, pn−1 n−1 = 1, p22 = q + pq, p24 =
= p2, pn−2 n−4 = q2, pn−2 n−2 = qp.



• In the fourth case: p11 = pn−1 n−3 = q, p13 = pn−1 n−1 = p, p22 = q + pq, p24 =
= p2, pn−2 n−4 = q2, pn−2 n−2 = p + qp.

Thus, we obtain a common property of these four matrices that is a specific property
of symmetry and that can be stated as follows

Theorem 1. (Symmetry Property). If a word is in a random process of generation
by a fork-join generation procedure, then in all cases of generation, the two-step tran-
sition matrix has n − 5 successive rows each of them containing the triplet of elements
q2, 2pq, p2 symmetrically disposed as against the first two and the last two rows. Fur-
thermore q2 and p2 are elements of two distinct diagonals symmetrically disposed as
against the main diagonal which contains the element 2pq.

1.4 Absorbing and reflecting barriers

Let now be again the situation when a word is generated by a fork-join procedure and
let us consider the first and the fourth cases. They will conduct us to a very interesting
result. We consider only the equivalence classes of derivations by which a word is not
generated.

Let us denote by A1 the event consisting in the word being generated by the class
D2, by A2 being generated by the class D3, · · · , by An−1 being generated by the class
Dn.

• In the first case the two-step transition matrix is the same with the two-step
transition matrix for a particle in a random walk between two absorbing barriers known
in the theory of Markov chains.

For example let us consider that a particle located on a straight line moves along the
line via random impacts occurring at times t1, t2, t3, · · · . The particle can be at points
with integral coordinates a, a + 1, a + 2, · · · , b. At points a and b there are absorbing
barriers. Each impact displaces the particle to the right with probability p and to the
left with probability q = 1 − p so long as the particle is not located at a barrier. If the
particle is at a barrier then, it remains in the states A1 and An−1 with probability 1.

• As regards the fourth case of generation of a word by a fork-join generation pro-
cedure, the two-step transition matrix is the same with the two-step transition matrix
for a particle in random walk between two reflecting barriers also known in the theory of
Markov chains. The conditions remain the same as in the former case, the only difference
being that if the particle is at a barrier, any impact will transfer it one unit inside the
gap between the barriers.

Therefore, these cases of generation of the words by a fork-join generation proce-
dure become of a special interest. The practical character of these cases must be also
emphasized and we believe that they will be very useful in some studies concerning the
generative systems.

2 Reliable systems: the increase of the effec-

tiveness of stand-by systems

The start point is the idea that dependind on the state of the stand-by equipment, can be
distinguished loaded, nonloaded and partially loaded relief. In the case of loaded relief,
the stand-by unit is in the same state as the operating unit and for this reason has the
same intensity of breakdowns. In the partially loaded case, the stand-by device is loaded,
but not so fully as the main equipment and for this reason has a different breakdown
intensity. A stand-by unit that is not loaded does not, naturally, suffer breakdown. Quite
naturally, loaded and nonloaded relief are special cases of partially loaded relief.



In this sense, we shall discuss, in short, some problems and results concerning the
increase of the effectiveness of stand-by systems, due especially to A. D. Solovyev and
B. V. Gnedenko (see Solovyev[13], Gnedenko[4], Gnedenko[5], Gnedenko[6]).

As Gnedenko himself said this problem is a basic part of the theory of stand-by
systems.

And for this reason it is to be expected to offer a specific application of the theory
of stochastic processes.

There are enough situations when it is possible to have an entire device in reserve
as, for example, a generator at a power station. Also it is possible to have in reserve a
component of a system or even a single element. A question arises: what is preferable,
to have large units or single elements in reserve ? An answer is given in the following
theorem

Theorem 2. If the switching of stand-by devices (units, elements, a.s.o.) is flawless,
then both in the case of loaded and nonloaded relief, an increase in the scale of the
stand-by system reduces non-breakdown operation of the whole system.

2.1 The probability that the system will operate flaw-
lessly

Now to increase the effectiveness of stand-by systems, devices that have failed are
repaired. Hence it is interesting to investigate the effect of repair on increasing the
reliability. It is confined ourselves to the case of one basic and one reserve system.

Will be supposed that the following conditions are fulfilled:
i on breakdown of the basic device, the stand-by unit immediately takes up the load;
ii the device that has failed undergoes repair immediately;
iii the repairs fully restore the properties of the basic device that failed;
iv the repair time is a random variable with a distribution function G(x);
v the repaired device becomes a stand-by unit;
vi the period of faultless operation of the device is random and is distributed in accord
with the law F (x) = 1 − e−λx, λ > 0, for the basic device and in accord with the law
F1(x) = 1 − e−λ1x, λ1 ≥ 0, for the stand-by device. In particular, if the stand-by unit
is nonloaded then, λ1 = 0 and if it is loaded then, λ1 = λ.

Definition 2. It is said that the system (basic unit plus stand-by unit) breaks down if
both devices go out of commission at the same time.

Let us denote by P (x) the probability that the system will operate flawlessly for a
time greater than x. Also the Laplace transforms is introduced

g(s) =

∫

∞

0
e−sxdG(x), ϕ(x) = −

∫

∞

0
e−sxdP (x).

Thus the following result is found

Theorem 3. Under the conditions i-vi before, the probability P(x) satisfies the following
integral equation

P (x) = e−(λ+λ1)x + (λ + λ1)e−λx

∫ x

0
e−λ1z [1 − G(x − z)]dz +

+(λ + λ1)

∫ x

0

∫ x−y

0
e−(λ+λ1)y−λzP (x − y − z)dG(z)dy. (1)

Proof. The event we are interesting in is decomposable into three mutually indepen-
dent events (flawless operation of the system during time from 0 to x):



1. During the time (0, x) neither the basic nor the stand-by element fails. The
probability of this event is

P1(x) = e−(λ+λ1)x. (2)

2. The first breakdown occurs prior to time x. The remaining element operates
flawlessly up to time x. Repair of the element which has failed is not completed
prior to time x. In this case, the probability of the event is as follows

P2(x) =

∫ x

0
(λ + λ1)e−(λ+λ1)ze−λ(x−z)[1 − G(x − z)]dz =

= (λ + λ1)e−λx

∫ x

0
e−λ1z [1 − G(x − z)]dz. (3)

3. The first breakdown occurs prior to time x, the repair of this element is completed
also prior to time x, during the repair period, the remaining element was functional.
From the time of repair to time x, the system functioned normally. Now, the
probability of the event, in this case, is

P3(x) =

∫ x

0

∫ x−y

0
(λ + λ1)e−(λ+λ1)ye−λxP (x − y − z)dG(z)dy =

= (λ + λ1)

∫ x

0

∫ x−y

0
e−(λ+λ1)y−λzP (x − y − z)dG(z)dy. (4)

But P (x) = P1(x) + P2(x) + P3(x) so that (1) results.�
Now one can observe that the solution of (1) is as follows

Proposition 1. In terms of Laplace transforms, the solution of the equation (1) is given
by the formula

ϕ(s) =
λ(λ + λ1)[1 − g(λ + s)]

(λ + s)[s + (λ + λ1)(1 − g(λ + s))]
. (5)

Note 1. By virtue of the properties of the exponential distribution, the result obtained
can be immediately extended to the case when there are n operating devices and one stand-
by unit. All devices have the same properties namely, they have the same distribution
functions for operating time and repairs. It is necessary only to replace λ by nλ in (1)
and (5).

2.2 The expectation of the time of flawless operation

Now to calculate the expectation of the time of flawless operation of the system will
be considered

[

dϕ(s)

ds

]

s=0

.

One gets successively
[

dϕ(s)

ds

]

s=0

=
[−λ(λ + λ1)g(λ)][λ(λ + λ1)(1 − g(λ))]

[λ(λ + λ1)(1 − g(λ))]2
−

−
[λ(λ + λ1)(1 − g(λ))][(λ + λ1)(1 − g(λ)) + λ(1 − (λ + λ1)g(λ))]

[λ(λ + λ1)(1 − g(λ))]2
=

=
−λ(λ + λ1)2(1 − g(λ))2 − λ2(λ + λ1)(1 − g(λ))

[λ(λ + λ1)(1 − g(λ))]2
=

= −
[λ(λ + λ1)(1 − g(λ))][λ + (λ + λ1)(1 − g(λ))]

[λ(λ + λ1)(1 − g(λ))]2
.



Therefore

m = −

[

dϕ(s)

ds

]

s=0

=
λ + (λ + λ1)(1 − g(λ))

λ(λ + λ1)(1 − g(λ))
. (6)

Now for a nonloaded stand-by system we have λ1 = 0, so that it results

m1 =
λ + λ(1 − g(λ))

λ2(1 − g(λ))
=

2 − g(λ)

λ(1 − g(λ))
(7)

while for a loaded stand-by system λ1 = λ and one gets

m2 =
λ + 2λ(1 − g(λ))

2λ2(1 − g(λ))
=

3 − 2g(λ)

2λ(1 − g(λ))
. (8)

2.3 Limit theorems

But, in the most practical cases, the mean duration of repairs is considerably less
than the mean time of flawless operation of the device. For this reason it was observed
that some limit theorems are necessary just to give a precise and rigorous meaning to the
results obtained in these situations. In the sequel we shall refer, in short, to these.

Let us suppose that the function G(x) depends on a certain parameter ν and for any
ε > 0,

1 − Gν(ε) → 0 (9)

as ν → ∞.
On the other hand, from (6), it is obtained that

gν(λ) → 1 (10)

as ν → ∞.
The converse is also true because, if for any s > 0 we have the relation gν(s) → 1, as

ν → ∞, then for any x > 0,
Gν(x) → 1

as ν → ∞.
Let us denote

αν =

(

1 +
λ1

λ

)

(1 − gν(λ))

or

λ + λ1 =
λαν

1 − gν(λ)
. (11)

Now, by (5) one gets

ϕν(ανs) =
λ(λ + λ1)[1 − gν(λ + ανs)]

(λ + ανs)[ανs + (λ + λ1)(1 − gν(λ + ανs))]
.

Then, replacing λ + λ1 from (11) it follows

ϕν(ανs) =

λ
λαν

1 − gν(λ)
[1 − gν(λ + ανs)]

(λ + ανs)

[

ανs +
λαν [1 − gν(λ + ανs)]

1 − gν(λ)

] =

=

λ2[1 − gν(λ + ανs)]

1 − gν(λ)

(λ + ανs)

(

s +
λ[1 − gν(λ + ανs)]

1 − gν(λ)

)



Therefore

ϕν(ανs) =

λ2 1 − gν(λ + ανs)

1 − gν(λ)

(λ + ανs)

(

s + λ
1 − gν(λ + ανs)

1 − gν(λ)

) . (12)

Thus, the following theorem results

Theorem 4. If the conditions (1), (5) and (6) to (12) hold then, by the condition (9),
the flow of failures of a reduplicated system tends to the elementary case, given the choice
of a proper unit of time.

The effect of repair on the operational effectiveness of a system can be estimated. In
this case it is natural to consider the ratio of the mean operational time of a system with
repair to that without repair. From the formula (6) the former can be calculated, and
from the formula

a0 =
2λ + λ1

λ(λ + λ1)

the latter.
The effectiveness of repair is now given by the equality

eν =
λ + (λ + λ1)(1 − gν(λ))

λ(λ + λ1)(1 − gν(λ))
·

λ(λ + λ1)

2λ + λ1
=

=
λ + (λ + λ1)(1 − gν(λ))

(2λ + λ1)(1 − gν(λ))
. (13)

Now let us suppose that

m1(ν) =

∫

∞

0
xdGν(x) =

1

ν

m2(ν) =

∫

∞

0
x2dGν(x) < +∞

and

m2(ν)

m1(ν)
→ 0 (14)

as ν → ∞.
It is also useful to be retained that the following theorem holds

Theorem 5. Let us suppose that the conditions (1), (5), (6) to (13) and (14) are
satisfied. Then for ν sufficiently large, the mean time of flawless operation of a system
with stand-by relief is asymptotically equal to the mean time of the system under the
assumption that

Gν(x) = 1 − e−νx.

Remarks. In recent years, algorithms of the stochastic approximation type have found
applications in new and diverse areas, and new techniques have been developed for proofs
of convergence and rate of convergence. The actual and potential applications in signal
processing have exploded. Indeed, whether or not they are called stochastic approxima-
tions, such algorithms occur frequently in practical systems for the purposes of noise or
interface cancellation, the optimization of post processing or equalization filters in time
varying communication channels, adaptive antenna systems, and many related applica-
tions.

In such applications, the underlying processes are often nonstationary, the optimal
value of the parameter of the system changes with time, and we keeps the step size



strictly away from zero in order to allow tracking. Such tracking applications lead to
new problems in the asymptotic analysis ; one wishes to estimate the tracking errors and
their dependence on the structure of the algorithm.

Let us return to the condition vi in Section 2.1 above and, for an unknown parameter
λ > 0, let us observe that a distribution function F (x), which can be the distribution
function of a ”system” or ”item”, with a ”life time” for which inspections are made at
time t1, t2, t3, · · · , can be defined. If the conclusion of the inspections is that the system is
inoperative, then it will be repared or replaced. In any other case nothing is done. Thus,
the problem is to choose the inspection plan, that is to choose the sequence t1, t2, t3, · · ·
in an optimal way in a suitable sense. Such problems were discussed, among other, by
J.H. Venter and J.L. Gastwirth[14], M.T. Wasan[15], P. Clément and G. Da Prato[2].

We shall come back to these aspects with a new occasion.
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