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Abstract. This paper focuses on the optimization of performance of single-user
chaos shift-keying (CSK). More efficient signal transmission is achieved in the co-
herent case by introducing the class of the so called deformed circular maps for the
generation of spreading. Also, the paired Bernoulli circular spreading (PBCS) is
introduced as an optimal choice, which attains the lower bound of bit error rate
(BER). As interest shifts to the non-coherent version of the system, attention moves
to the receiver end. Maximum likelihood (ML) decoding is utilized serving as an
improvement over the correlation decoder. To make the methodology numerically
realizable, a Monte Carlo likelihood approach is employed.
Keywords: Communication systems, Chaos shift-keying, Optimal spreading, Cor-
relation decoding, Likelihood decoding, Monte Carlo likelihood.

1 Single-user coherent CSK: the model

A brief description of single-user coherent CSK, based on [4], is provided.

Assume that the information source comprises of K binary bits, each of
which is transmitted N times for reliability purposes. Let b = ±1 denote any
single binary bit out of the K, which is replicated N times.

A stationary process X := (X0, X1, . . . , XN−1) of mean µX and variance
σ2

X
is involved in the modulation process. X is called the spreading and N

the spreading factor.

The transmitter emits the scalar product T := b(X − µX1 ).

The N -length transmitted signal T is degraded as it passes through the
channel. Stochastic channel noise ǫ := (ǫ0, ǫ1, . . . , ǫN−1) models the corrup-
tion of T . It is assumed that the system is affected by white channel noise,
which means that ǫ ∼ N(0, σ2

ǫ I), where 0 and I stand for the N -length null
vector and the N × N identity matrix respectively.

A first modelling approach would be to set the received signal R to be
the transmitted signal T distorted by the additive channel noise ǫ, that is

R := T + ǫ = b(X − µX1 ) + ǫ. (1)
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2 Criteria for optimal spreading

When evaluating the reliability of the system, simulations of bit error rate
(BER) against signal-to-noise ration (SNR) are run. BER is defined as the
probability of erroneously decoding a single bit b. A lower bound has been
found for BER. For more details, see [4].

Vital for the outcome of BER simulations is the bit energy S(X) of spread-
ing X , which is defined to be the function S(X) := ‖X − µX1 ‖ 2/σ2

X
.

The choice of X affects BER. There thus arises the question how could
X be selected in order to minimize BER. In an attempt to offer an answer,
the concept of bit energy helped to form three criteria for optimally choosing
the spreading.

They are summarized here hierarchically from the most to the least strin-
gent. As the firmness of the condition imposed by each of the three successive
criteria loosens, the possibility of attaining the condition increases with a rel-
ative payoff in the system’s performance.

Optimality Criterion I: Define the spreading X in a way that its bit
energy S(X) becomes a constant equal to the spreading length N . X is then
optimal.

Optimality Criterion II: Set X such that S(X) has zero variance.
Optimality Criterion III: Choose X whose mean-adjusted quadratic

autocorrelation has lag(1) which is as close as possible to −1, that is

Corr
[(

Xt − µX

)2

,
(

Xt+1 − µX

)2]

= −1. (2)

[8] and [5] elaborate on how these criteria have been derived.

3 Family of deformed circular maps

One way of generating the stationary spreading X would be to start from a
random variable X0 and iteratively produce the rest of the N − 1 members
of X by means of an one-dimensional map τ : [c, d] → [c, d] , c, d ∈ R. Then,

Xn = τ (Xn−1) , n = 1, 2, . . . , N − 1. (3)

Widely used choices of τ are, as instances, the tent, Bernoulli and logistic
maps. However, τ can be defined in ways that better conform with the third
optimality criterion.

In trying to reduce the lag(1) of mean-adjusted quadratic autocorrelation
function (ACF), the class of deformed circular maps has been defined as

τ(x) :=







−
√

−(1 − r)−1x2 + (1 − r)−1, −1 ≤ x < −√
r√

−r−1x2 + 1, −√
r ≤ x <

√
r

−
√

−(1 − r)−1x2 + (1 − r)−1,
√

r ≤ x ≤ 1

. (4)
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An explanation on how the deformed circular family has been established is
available in [5].

r is called the deforming parameter and takes values in (0, 1). Figure 1
demonstrates that values of r < 0.5 squeeze the central branch of the map,
while values of r > 0.5 stretch it.
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Fig. 1. Three examples of deformed circular maps and their invariant densities.
(a): Map for r = 0.1, (b): map for r = 0.42, (c): map for r = 0.8, (d): density for
r = 0.1, (e): density for r = 0.42, (f): density for r = 0.8.

It can be confirmed that the function f(x), given by

f(x) :=

{

−2(1 − r)x, −1 ≤ x ≤ 0
2rx, 0 < x ≤ 1

, (5)

satisfies the Perron-Frobenius equation. Thus, f(x) can be seen as the in-
variant distribution of spreading iteratively produced by deformed circular
maps. Figure 1 displays the plot of f(x) for three values of r.

For r = 0.5, the so called circular map has the ”V-shaped” invariant
density f(x) = |x|, x ∈ [−1, 1], which results in zero mean. The mean-
adjusted quadratic ACF is known for any lag (see [6]):

Corr(X2
t , X2

t+s) =

(

−1

2

)s

, s ∈ N. (6)

lag(1) = −0.5 according to (6) and therefore the circular map has smaller
first lag than the tent and Bernoulli maps, which have lag(1) = 0.25.
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The lag(1) value of the mean-adjusted quadratic ACF has been calcu-
lated as a function of deforming parameter r, see Figure 2. With the help
of numerical minimization, it has been found that the minimal lag(1) is ap-
proximately equal to −0.722 and is achieved for r ≃ 0.42. So, the optimal
deformed circular map, with respect to the third optimality criterion, is the
one with deforming parameter r ≃ 0.42.

Fig. 2. Dashed line: Plot of lag(1)
of mean-adjusted quadratic ACF of
deformed circular family versus its
deforming parameter r. Solid line:
Fréchet lower bound of lag(1) of
mean-adjusted quadratic ACF for
the class of spreading sequences with
invariant density given by (5).
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Also, the Fréchet lower bound of lag(1) has been computed, see [7]. Such
a lower bound gives the minimal attainable lag(1) mean-adjusted quadratic
autocorrelation among all stationary processes with invariant distribution
described by (5), see Figure 2. Despite having not reached the lag(1) lower
bound, spreading produced by the deformed circular maps outperforms that
generated by the logistic, Bernoulli, tent and other conventionally used maps.
BER simulations confirm the superiority of deformed circular family, see
Figure 3.
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Fig. 3. Simulated BER of tent, logistic, circular and deformed circular (r = 0.42)
spreading for two values of spreading factor N .



Optimum CSK Communication 5

4 Paired Bernoulli circular spreading (PBCS)

When r = 0.5, the Fréchet lower bound of the first lag equals −1. This
implies that there exists a stationary process with the ”V-shaped” invariant
density f(x) = |x|, x ∈ [−1, 1] and lag(1) mean-adjusted autocorrelation
equal to −1.

Starting from that knowledge of the distribution of spreading which fully
meets the third optimality criterion, the Bernoulli circular spreading (BCS)
has been defined, see [7]. Although BER simulations showed that BCS is a
relatively efficient type of spreading, it has a main drawback; BCS can take
only four values.

As an improvement over BCS, paired Bernoulli circular spreading (PBCS)
has been suggested. To introduce PBCS, let X := (X0, X1, · · · , XN−1) de-
note the N−length spreading sequence, where N is any even natural number.
Also, consider the function f

f(x) :=

{

|x − k|, x ∈ [k − 1, k + 1]
0, x ∈ R \ [k − 1, k + 1]

, k ∈ R, (7)

and the random vector (A1, A3, . . . , AN−1) given by

A2i−1 := (−1)1−Φ2i−1 , Φ2i−1 ∼ Ber(p), i ∈
{

1, 2, · · · ,
N

2

}

. (8)

The even subscripted members of PBCS are defined as

X2i ∼ f, i ∈
{

1, 2, · · · ,
N − 2

2

}

, (9)

while the odd subscripted ones are

X2i−1 = k + A2i−1

√

1 − (X2i−2 − k)2, i ∈
{

1, 2, · · · ,
N

2

}

. (10)

It has been shown that (7) satisfies the Perron-Frobenius equation and
can thus be accepted as the invariant distribution of PBCS.

To further explain how PBCS is constructed, it could be said that the
even subscripted members X0, X2, XN−2 of X are sampled from (7). To
obtain the odd subscripted members X2i−1, a Bernoulli trial is performed to
specify A2i−1 and then (10) is invoked in order to calculate X2i−1 by means
of the previous value X2i−2, which has been sampled from (7).

Thinking of PBCS pairwise allows for its geometrical interpretation. Each
ordered pair (X2i, X2i+1), i ∈ {0, 1, · · · , (N − 2)/2}, represents a point in a
circle of centre (k, k) and radius 1, see Figure 4.

PBCS can take an infinite number of values. Geometrically speaking, any
point of the unit circle with centre (k, k) could be included in PBCS. On the
contrary, BCS would only allow four possible points of the circle to appear
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Fig. 4. Simulation of PBCS from the unit circle of centre (0, 0) for spreading length
N = 20 , N = 50 and N = 1000 .

in the spreading. So, one of the goals of PBCS has been achieved, namely
to heal the weakness of BCS by allowing an infinite number of real-valued
numbers in [k − 1, k + 1] to appear in the spreading.

Another question to pose is how well PBCS satisfies the third optimality
criterion. The lag(1) of quadratic ACF is given by

Corr
[

(Xi − k)2 , (Xi+1 − k)2
]

=

{

−1, if i is odd
0, if i is even

. (11)

So, the first lag equals −1 as intended. However, this is the case only for
even subscripted members of the spreading and from that point of view the
third optimality criterion is not fully met.

It is interesting to point out that the invariant distribution of PBCS for
k = 0 coincides with the ”V-shaped” density of circular map, which has
deforming parameter r = 0.5. Recall that the Fréchet lower bound for the
first lag has been calculated to be −1 when r = 0.5. So, there has been found
a stationary process whose odd subscripted members attain the Fréchet lower
bound of lag(1) mean-adjusted quadratic autocorrelation.

More importantly, it has been proven that the bit energy of PBCS is
constant and equal to the spreading length N . PBCS therefore meets the
first optimality criterion. It has also been proven that any stationary process
which meet the first optimality criterion has BER equal to the BER lower
bound given in [4]. BER simulations have been run too and they verified
the theory. So, one could safely state the conclusion that PBCS is optimal
without leaving room for further reduction of BER.

5 Single-user non-coherent CSK: the model

So far optimization has focused on the transmitter and more specifically on
the choice of spreading. In the coherent version of single-user CSK, there is
not much to be done at the receiver end. The traditional engineering tool
for decoding is the correlation decoder, which coincides with the likelihood
decoder in the coherent case.
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However, one may assume that the spreading X is not known at the
receiver, as opposed to the coherent system. Then not only T = b(X−µX1 ),
but also X has to be transmitted.

Both N -length signals T and X are corrupted by noise when passing
through the channel. Eventually, two vectors R and Y received:

R := b(X − µX1 ) + ǫ, (12)

Y := X − µX1 + η, (13)

where it is assumed that ǫ ∼ N(0, σ2I) and η ∼ N(0, σ2I). Since T and
X pass through the same channel, it is plausible to think of ǫ and η having
common error variance σ2. ǫ and η are also assumed to be independent of
each other.

6 Monte Carlo Maximum Likelihood Decoding

For the non-coherent system described by (12) and (13), the correlation de-
coder C(y, r) computes as the inner product C(y, r) := 〈y, r〉. The decoding
rule based on the correlation decoder is

C(y, r) ≥ 0 ⇒ b̂ = +1, C(y, r) < 0 ⇒ b̂ = −1. (14)

Motivated by [3], there was the thought that maximum likelihood (ML)
decoding might be a more efficient alternative.

Firstly, the likelihood function ℓ(b, σ2|y, r) has been expressed as

ℓ(b, σ2|y, r) = (2πσ2)−N

∫

· · ·
∫

D(fX )

exp

[

− 1

2σ2
Ax,y,r(b)

]

fX(x ) dx, (15)

where

Ax,y,r(b) := ‖y − (x − µX1) ‖2 + ‖ r − b(x − µX1) ‖2. (16)

Although the parameter of interest is b, the maximization of likelihood
ℓ(b, σ2|y, r) requires the estimation of one more parameter, namely of channel
noise σ2. Notice that ℓ(b, σ2|y, r) is a function of the discrete variable b and
of the continuous one σ2.

The ML decoder L(y, r) is defined as

L(y, r) = max
σ2

[

ℓ(+1, σ2|y, r)
]

− max
σ2

[

ℓ(−1, σ2|y, r)
]

. (17)

and likelihood estimation imposes the ML decoding rule

L(y, r) ≥ 0 ⇒ b̂ = +1, L(y, r) < 0 ⇒ b̂ = −1. (18)
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Direct maximization of likelihood (15) is probably intractable and there-
fore (17) is unlikely to be calculated. A computational solution is nevertheless
realizable once (15) is rewritten as

ℓ(b, σ2|y, r) = EX

{

(2πσ2)−Nexp

[

− 1

2σ2
AX,y,r(b)

]}

. (19)

It was the expectation appearing in (19) which gave the idea of a Monte
Carlo maximum likelihood (MCML) approach, see [2] and [1]. For the esti-
mation of the expectation one would have to sample m spreading sequences
xi, i ∈ {1, 2, · · · , m}, each of length N . Then the Monte Carlo likelihood

ℓ̂(b, σ2|y, r) calculates as

ℓ̂(b, σ2|y, r) =
1

m

m
∑

i=1

{

(2πσ2)−Nexp

[

− 1

2σ2
Axi,y,r(b)

]}

. (20)

BER simulations suggest that MCML decoder L̂(y, r) outperforms cor-
relation decoder C(y, r).

MCML decoding allows for exact results to be obtained. It is hoped that
the idea could be implemented in more complex communication settings.
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