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Abstract. Effect of a complicated many-body environment is analyzed on the
chaotic motion of a quantum particle in a mesoscopic ballistic structure. The ab-
sorption and dephasing phenomena are treated on the same footing in the frame-
work of a schematic microscopic model. The single-particle doorway resonance
states excited in the structure via an external channel are damped not only be-
cause of the escape onto such channels but also due to ulterior population of the
long-lived background states. The transmission through the structure is presented
as an incoherent sum of the flow formed by the interfering damped doorway reso-
nances and the retarded flow of the particles re-emitted by the environment.
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1 Introduction

Extensive study of the electron transport through ballistic micro-structures
[1] has drawn much attention to peculiarities of chaotic wave interference
in open mesoscopic set-ups. It is well recognized by now that the statistical
approach [2–4] based on the random matrix theory (RMT) provides a reliable
basis for describing the universal fluctuations which, in particular, manifests
itself in the single-particle resonance chaotic scattering and the transport
phenomena. However experiments with the ballistic quantum dots reveal
appreciable and persisting up to very low temperatures deviation from the
predictions of the standard RMT, which indicates some loss of the quantum-
mechanical coherence. This effect is called dephasing.

Two different methods of accounting for the dephasing have been sug-
gested, which give different results. In the phenomenological Büttiker’s voltage-
probe model [5] an subsidiary randomizing scatterer has been introduced
with Mφ channels each with a sticking coefficient Tφ. Even assuming all such
channels to be statistically equivalent we are still left with two independent
parameters. This results in an ambiguity since quantities of physical inter-
est (e.g. the conductance distribution) depend, generally, on Mφ and Tφ

separately whereas the dephasing phenomenon is controlled by the unique
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parameter: the dephasing time τφ which is fixed by their product. On the
other hand, only one parameter: the strength of a uniform imaginary po-
tential governs the Efetov’s model [6] which points at the absorption as the
cause of the loss of quantum coherence.

The difference and deficiencies of the two models [7,8] have been analyzed
in [8]. A prescription was suggested how to get rid of uncertainties, and si-
multaneously, to accord the models by considering the limit Mφ→∞, Tφ→ 0
at fixed product MφTφ≡Γφ in the first model and by compulsory restoration
of the broken because of the absorption unitarity in the second. The con-
struction proposed infers a complicated internal structure of the Büttiker’s
probe which should, in particular, possess a dense energy spectrum. Other-
wise, the assumed limit could hardly be physically justified. If so, the typical
time τp spent by the scattering particle inside the probe, being proportional
to its mean spectral density, forms a new time scale different from the de-
phasing time. Below we propose a microscopic schematic model of absorption
and dephasing phenomena induced by interaction with a very complicated
environment with very high density of the energy levels.

2 Chaotic resonance scattering against a complicated

background

2.1 Fragmentation of the resonance states because of the

influence of the background

Let D be the mean level spacing between the single-particle resonance states
in an open cavity with perfectly reflecting walls and no environment. The
cavity is supposed to be attached to two similar leads which support M
channel states. An open system of such a kind is described by an effective non-
Hermitian Hamiltonian H(s) = H(s) − i

2AA† where the rectangular matrix A

consists of the M (s) column vectors of coupling amplitudes between internal
and channel states. Further, let the Hermitian matrix H(e) represent the
Hamiltonian of a a many-body environment with a very small mean level
spacing δ. The latter fixes the smallest energy scale which will never appear
explicitly but ensures unitarity of the scattering matrix S(E) = I − iT (E).
The total system: the cavity interacting with the environment, is described
by the extended non-Hermitian effective Hamiltonian

H =

(

H(s) V †

V H(e)

)

.

The corresponding transition matrix equals

T (E) = A†GD(E)A

where GD(E) stands for the upper left block

GD(E) =
I

E −H(s) − Σ(E)
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of the resolvent G(E) = I
E−H of the extended non-Hermitian Hamiltonian H.

The subscript D means ”doorway” and marks the states in the ideal cavity,
which are directly connected to the scattering channels. In zero approxima-
tion V ≡ 0, only these states have complex eigenenergies, En = εn− i

2Γn. The
environment states get excess to the channels only due to the mixing with the
doorway resonances exclusively through which they can be excited or decay.
The matrix Σ(E) = V † 1

E−H V accounts for transitions cavity ↔ environment
and remains Hermitian (and, correspondingly, the scattering matrix remains
unitary) as long as the energy spectrum of the environment is discrete, i.e.
the mean level spacing δ 6= 0.

In the single-particle mean field approximation, (quasi)electrons move in
the background in a field which is random because of impurities. The dimen-
sion N (e) of the Hilbert space of the quasi-particle in the background is much
larger than that N (s) of the particle in the mesoscopic cavity, N (e) ≫ N (s).
Correspondingly, the single-particle mean level spacing d is much smaller
than the doorway mean spacing, d ≪ D , although it is very much larger,
d >>> δ, than the many-body level spacing δ. Supposing, therefore, that
the coupling matrix elements are random,

〈Vµm〉 = 0 , 〈V ∗
µmVνn〉 =

1

2
Γs

d

π
δµνδmn ,

the matrix Σ reduces after such an averaging to the function

Σ(E) =
1

2
Γs g(E); g(E) =

d

π
Tr

1

E − H(e)
.

Here the subscripts m,n and µ, ν mark the doorway and the background

single-particle states respectively and Γs = 2π 〈|V |2〉
d is the spreading width

which characterizes the scale of the fine-structure fragmentation of the door-
way states because of the coupling to the background. The loop function
g(E) is real so that the V-averaging does not destroy the unitarity.

The transition amplitudes reduce to the sums of the doorway resonant
contributions

T ab(E) =
∑

n

Aa
nAb

n

E − En − 1
2Γsg(E)

≡
∑

n

Aa
nAb

n

Dn(E)
. (1)

For the certainty sake, we restrict ourselves for some time to the case of
systems with time reversal symmetry. Then the decay amplitudes Aa

n are real
and the matrix of non-Hermitian effective Hamiltonian H(s) is symmetric.
The appearing in Eq. (1) amplitudes Aa

n are the matrix elements of the
coupling matrix A = ΨT A with Ψ being the orthogonal (ΨT Ψ = 1) matrix
of the eigenstates of the effective Hamiltonian H(s). Unlike the real matrix
elements of the matrix A, those of the matrix A are complex quantities [9].

The exact resonance spectrum {Eα} is found from the equation

E − En − 1

2
Γsg(E) = 0.
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Each doorway state is fragmented to ∼ Γs/d narrow fine-structure reso-
nances. The enveloping curve has the Lorentzian shape with the width Γs.
Finally, transition amplitudes can be represented as coherent sums of inter-
fering contributions of the exact resonances Eα,

T ab(E) =
∑

α

Aa
αAb

α

E − Eα
.

Literally, no dephasing takes place yet. Phases are tuned in such a way
that the unitarity condition is fulfilled. However, as distinct from the case
of ideal cavity the interference pattern depends now on the two additional
parameters: the fine-structure level spacing d and the spreading width Γs.

3 Averaging over the fine-structure scale

Let us suppose that the energy resolution ∆E is not perfect and do not allow
us to resolve the fine structure of the doorway resonances, d ≪ ∆E though
∆E ≪ D. Then only averaged cross sections

σab(E) =
1

∆E

∫ E+ 1
2 ∆E

E− 1
2 ∆E

dE′ σab(E′)

are measured. To carry out the energy averaging explicitly, we neglect
the level fluctuations on the fine structure scale and assume the uniform
spectrum, εµ = µd (picket fence approximation). This yields immediately
g(E) = cot

(

πE
d

)

.

3.1 Isolated doorway resonance

In the case of an isolated doorway resonance with the width Γ =
∑

c Γ c ≪ D
though Γ ≫ ∆E, which is situated at the energy Eres = 0 the transition cross
section equals

σab(E) =
∣

∣

∣
T ab(E)

∣

∣

∣

2

=
Γ aΓ b

[

E − 1
2Γs cot

(

πE
d

)]2
+ 1

4Γ 2

and the energy averaging yields

σab(E) =
Γ aΓ b

E2 + 1
4 (Γ + Γs)

2 +
Γ aΓ b

Γ

Γs

E2 + 1
4 (Γ + Γs)

2 .

The phase coherence is destroyed by the averaging and the result is given by
a sum of two incoherent contributions. The first one corresponds to a single
resonance widened because absorption by the environment. This contribution
is obtained with the aid of shifting by the distance 1

2Γs in the upper part
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of the complex energy plane. The second term accounts for the particles re-
injected from the background. There is no net loss of particles. All of them
are, finally, back. The environment looks from outside as a black box which
swallows particles and spits them back after some time.

The transport through the cavity is characterized by the quantity [3,4]

G(E) =
∑

a∈1,d∈2

σab(E) =
Γ1Γ2

Λ(E)
+

Γ1Γ2

Γ1 + Γ2

Γs

Λ(E)
= T12 +

T1sTs2

T1s + Ts2
(2)

where Λ(E) = E2 + 1
4 (Γ + Γs)

2
. The second term in the final expression is

expressed in the terms of the subsidiary transitions probabilities

Tsk(E) =
Γs Γk

Λ(E)
, Γk =

∑

c∈k

Γ c, k = 1, 2, Γ1 + Γ2 = Γ (3)

entailed by an additional fictitious channel with the partial width Γs. The
result (2) is identical to that of the Büttiker’s voltage probe model [5] of
dephasing phenomenon with the dephasing rate given by γs = 2π

D Γs = ΓsτD

where τD is the mean delay time in the cavity.
One can simulate such a situation by introducing an additional fictitious

(M (s) + 1)th channel with the transition amplitude A(s) =
√

Γs which con-
nects the resonance state to the environment. It is easy to check that the
fictitious scattering matrix S̃(E) = I − iT̃ (E) built in such a way is unitary.
Nevertheless, one should remember that the similarity is not perfect. Indeed,
in the case of transition from an individual initial channel b onto a subgroup
of the final channels the model cross section equals

∑

c∈sub

σ̃cb(E) =
1 + Γs/

∑

c∈sub Γ c

1 + Γs/Γ

∑

c∈sub

σcb(E) ≥
∑

c∈sub

σcb(E) .

The equality takes place only if the summation over the final channels is
extended to all of them.

The single-particle approximation used above is well justified only when
the scattering energy E is close to the Fermi surface in the environment. For
higher scattering energies, many-body effects should be taken into account,
which result, in particular, in finite lifetime of the quasi-particle. The simplest
way to do this is to attribute some imaginary part to quasi-particle’s energy,
εµ = µd − i

2Γe. Strictly speaking, this suggestion destroys the unitarity of
the S-matrix in contradiction with what has been suggested above. However,
an initially excited single-particle state with the energy εµ evolves because of
many-body effects quite similar to a quasi-stationary state till the time 2π/δ.
A particle delayed for such a long time can be considered as irreversibly
absorbed.

The resonant denominator in the Eq. (1) equals in this case [10]

Dres(E) = E − Eres −
1

2
Γs(1 − ξ2)

η

1 + ξ2η2
+

i

2

(

Γ + Γsξ
1 + η2

1 + ξ2η2

)
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where the following notations have been used:

ξ = tanh

(

πΓe

2d

)

, η = cot

(

πE

d

)

The total averaged transport cross section G(E) still retains its form (2) but
the subsidiary transition probabilities (3) read now as

Tsk(E) ⇒ Tsk(E; κ) =
Γs Γk

Λ(E; κ)

where
1

Λ(E; κ)
=

1

Λ(E)

1

1 + κΛ(E)
ΓΓs

. (4)

The parameter κ is defined as

κ =
4ξ

(1 − ξ)2
= eΓeτd − 1 ≈

{

Γeτd , Γe ≪ 1/τd

eΓeτd , Γe ≫ 1/τd

with τd = 2π/d being the mean delay time of the particle in the background.
The absorption is small if the particle’s lifetime τe = 1/Γe in the environment
is noticeably larger than the delay time τd. In the opposite case the quasi-
particle has enough time to decay and irreversible absorption takes place.
The transition probabilities (4) vanish in such a case and our consideration
reproduces in this limit the result of Efetov’s imaginary potential model [6]
with the strength α = π

D Γs = 1
2γs. Notice that the crossover from the first

to the second regime is very sharp because of the exponential dependence on
the dimensionless parameter γe ≡ Γeτd.

3.2 Overlapping doorway resonances

In the general case of overlapping doorway resonances, the average cross
section reads accordingly to the Eq. (1)

σab(E) =
∑

n′n

Aa
n′

∗Ab
n′

∗Aa
nAb

n

1

D∗
n′(E)Dn(E)

. (5)

A bit tedious calculation yields

1
D∗

n′ (E)Dn(E)

= 1
D̃∗

n′ (E)D̃n(E)

[

1 +
Γ 2

s

−iΓs(E∗

n′−En)+κ D̃∗

n′ (E)D̃n(E)

]

where D̃n(E) = E − En + i
2 (Γn + Γs).



Quantum Transport Against a Background 7

Let us suppose first that κ = 0. Then taking into account the following
two identities

i
E∗

n′−En
=

∫ ∞
0

dtre
i(E∗

n′−En)tr ;

e−iEntr

D̃n(E)
= −ie−i(E+ i

2 Γs)tr

∫ ∞
tr

dt eiEt−i(En− i

2 Γs)t

we can represent the averaged cross section (5) as a sum, σab(E) = σab
d (E)+

σab
r (E), of incoherent flows the first of which,

σab
d (E) =

∣

∣

∣

∑

n

Aa
nAb

n

D̃n(E)

∣

∣

∣

2

(6)

describes the contribution of the doorway states damped because of the cap-
ture by the environment when the second,

σab
r (E) = Γs

∫ ∞

0

dtrσ
ab
r (E; tr), σab

r (E; tr) =
∣

∣

∣

∑

n

Aa
nAb

n

D̃n(E)
e−iEntr

∣

∣

∣

2

accounts for the particles which spend some time tr in the background, repop-
ulate the doorway levels, and finally escape from the cavity via the channel
a.

With the help of the Bell-Steinberger relation

1

E∗
n′ − En

= −i
Un′n

∑

c Ac
n′Ac

n

contribution Gr(E) =
∑

a∈1,d∈2 σab
r (E) of the re-injected particles to the

1 → 2 transmission can be transformed to

Gr(E) =
∑

n′n

Un′n

√

Un′n′Unn

∑

a∈1 Φa
n′

∗ Φa
n

∑

b∈2 Φb
n′

∗
Φb

n
∑

a∈1 Φa
n′

∗ Φa
n +

∑

b∈2 Φb
n′

∗
Φb

n

.

Here U = Ψ†Ψ is the matrix of non-orthogonality of the overlapping doorway
states and the subsidiary amplitudes

Φa
n(E) =

√
Γs Aa

n/
√

Unn

D̃n(E)

implicate the fictitious channel. The quantities Γ a = 1
Unn

|Aa
n|2 satisfy the

condition
∑

a Γ a = Γ and can be interpreted as the partial widths.
In the case of moderately overlapping doorway resonances the matrix

Un′n ≈ δn′n and only probabilities
∣

∣Φa
n(E)

∣

∣

2
contribute. Then the result

is similar to that of the Büttiker’s model. However, the amplitudes Φa
n(E)

interfere when the overlap is strong. It is due to the fact that the returning
particles cannot escape directly but rather repopulate the doorway states
before leaving the cavity.
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4 Ensemble averaging

If the particle motion in the cavity is classically chaotic, which is the case of
the main interest, the ensemble averaging should be carried out. It can be
shown then that such an averaging fully eliminates the spreading width from
the mean cross section as long as the many-body effects in the background are
fully neglected. Indeed, the ensemble averaged cross section (6) is expressed
in the terms of the S-matrix two-point correlation function Cab

V (ε) = Cab
0 (ε−

iΓs) as

〈σab
d (E)〉 = Cab

V (0) = Cab
0 (−iΓs) =

∫ ∞

0

dt e−Γst Kab
0 (t)

where the subscript V indicates the coupling to the background and the
function Kab

0 (t) is the Fourier transform of the correlation function Cab
0 (ε).

Using the identity

e−iEntr

D̃n(E)
=

1

2π
eΓstr/2

∫ ∞

0

dt eiEt

∫ ∞

−∞
dE′ e−iE′(t+tr)

D̃n(E′)

one can convince oneself that

〈σab
r (E; tr)〉 =

∫ ∞

0

dt e−Γst Kab
0 (t + tr)

and, finally,

〈σab(E)〉 =
∫ ∞
0

dt e−Γst Kab
0 (t) + Γs

∫ ∞
0

dtr
∫ ∞
0

dt e−Γst Kab
0 (t + tr)

=
∫ ∞
0

dt Kab
0 (t) = Cab

0 (0) ≡ σab
0 (E) .

(7)

Separating in Eq. (5) the part which does not depend of the spread-
ing width after the ensemble averaging we arrive at the conclusion that
〈σab(E)〉 = σab

0 (E) + ∆σab
r (E) where

∆σab
r (E) ≡ κ〈∑n′n Aa

n′

∗Ab
n′

∗Aa
nAb

n
1

E∗

n′−En

×
[

1
E∗

n′−En

1

1+i κ

Γs
D̃∗

n′ (E)D̃n(E)/(E∗

n′−En)

]

〉
(8)

In spite of the presence of absorption the cross section (8) can still be ex-
pressed in terms of the Fourier transform Kab

0 (t) of the two-point correlation
function Cab

0 (ε). To do this we first formally expand the expression in the
second line into power series with respect to the parameter κ and then make
use of the relations:

1

(E∗

n′−En)
(k+1) = − i

k!

∫ ∞
0

dt eΓst (−it)k e−iD̃∗

n′ (E)t eiD̃n(E)t;

D̃k
n(E) eiD̃n(E)t =

(

−i d
dt

)k
eiD̃n(E)t;

eiD̃n(E)t = −eiEt 1
2πi

∫ ∞
−∞ dE′ e−iE

′
t

D̃n(E′)
.
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The following up summation brings us to the result

∆σab
r (E) = − κ

(2π)2

∫ ∞
0

dtr
∫ ∞
0

dt eΓs(tr+t)

[

e−
κt

Γs

∂
2

∂t1∂t2 eiE(t1−t2)

×
∫ ∞
0

dE1

∫ ∞
0

dE2 eiE1(tr+t2)−E2(tr+t1) C0 (E1 − E2 − iΓs)
]

t1=t2=t

which after a change of the variables:

E = 1
2 (E1 + E2), t = 1

2 (t1 + t2),
ε = E1 − E2 τ = t1 − t2

and integration over the variables E and ε yields

∆σab
r (E) = −

√

κΓs

4π

∫ ∞
0

dtr
∫ ∞
0

dt√
t
e
−t
[

− d

dtr
− κ

4Γs
( d

dtr
−Γs)

2
]

Kab
0 (tr)

= −
√

κΓs

4

∫ ∞
0

dtr
√

− d

dtr
− κ

4Γs
( d

dtr
−Γs)

2
Kab

0 (tr) .

(Notice that the form-factors Kab
0 (t) monotonously decreases with the time

t.) Being presented in such a form this expression is equally valid for both
the orthogonal (GOE) as well as the unitary (GUE) symmetry groups.

To simplify subsequent calculation we will consider the case of an appre-
ciably large number M ≫ 1 of statistically equivalent scattering channels all
with the maximal transmission coefficient T = 1. Then the channel indices
a, b can be dropped and the characteristic decay time of the function K(t)
tW = 1/ΓW = tH/M is much shorter then the Heisenberg time tH = 2π/D
(here ΓW = D

2π M is the so called Weisskopf width). It is convenient to
represent the function K0(t), which is real, positive definite and satisfies the
conditions K0(t < 0) = 0, K0(0) = 1 in the form of the mean-weighted decay
exponent [11]

K0(t) =

∫ ∞

0

dΓ e−Γt w(Γ ) .

Rigorously, the weight functions w(Γ ) are different in the intervals t < tH
and t > tH . However contribution of the latter domain vanishes as e−M [11]
when the number of channel grows. Neglecting such a contribution we obtain

∆σab
r (E) = −

√

κΓs

4

∫ ∞

0

dΓ
w(Γ )

Γ

1
√

Γ + κ
4Γs

(Γ + Γs)2
. (9)

If the parameter κ ≫ 4ΓsΓW

(Γs+ΓW )2 the found expression ceases to depend on it

and reduces to

∆σab
r (E) ⇒ −Γs

∫ ∞
0

dΓ w(Γ )
Γ (Γ+Γs)

= −Γs

∫ ∞
0

dtr
∫ ∞
0

dt e−Γst Kab
0 (t + tr) .
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Independently of the symmetry class considered, this contribution perfectly
compensates the second term in the r.h.s. of the Eq. (7). The resulting mean
cross section is identical to that of the Efetov’s imaginary-potential model
[6].

On the contrary, in the limit of weak absorbtion κ ≪ 4ΓsΓW

(Γs+ΓW )2 the result

which reads as

∆σab
r (E) ⇒ −

√

κΓs

4

∫ ∞

0

dΓ
w(Γ )

Γ
3
2

(10)

strongly depends on presence or absence of the time-reversal symmetry. In
the first case the well known asymptotic expansion [2] of the two-point cor-
relation function yields in the considered case of perfect coupling to the con-
tinuum [11]

w(GOE)(Γ ) = δ(Γ − ΓW ) − 2

tH
δ′(Γ − ΓW ) +

M

2t2H
δ′′(Γ − ΓW ) + ... (11)

whereas in the second case

w(GUE)(Γ ) = δ(Γ − ΓW ) + ... (12)

where contributions of the omitted terms in (8) are O(1/(M−7/2)). Within
this accuracy we obtain for the transport functions (2):

G(GOE)(E) = M1M2

M

[(

1 −
√

κγs

4M

)

− 1
M

(

1 − 9
8

√

κγs

4M

)]

,

G(GUE)(E) = M1M2

M

(

1 −
√

κγs

4M

)

.

The difference

∆G(E) ≡ G(GUE)(E) − G(GOE)(E) =
M1M2

M2

(

1 − 9

8

√

κγs

4M

)

(13)

is referred to as the weak localization whereas suppression of this term im-
plies dephasing. We conclude, therefore, that the decay of quasi-particles in
the environment not only induces reduction of the total outgoing flow but
accounts also for the dephasing effect.

The regime of weak absorption considered above is restricted to the range
0 < κ ≤ 4ΓsΓW

(Γs+ΓW )2 which is very narrow if one out of the two widths Γs, ΓW

appreciably exceeds another. Indeed, if for example Γs ≫ ΓW and therefore
κ ≪ 4ΓW /Γs ≪ 1 the probability to penetrate into the environment prevails
and the particle can finally escape from the cavity through an open channel
only if the decay width of quasi-particle in the environment is small enough,
γe ≪ 4γs/M . Otherwise absorption dominates. On the contrary, if ΓW ≫ Γs

and therefore κ ≪ 4Γs/ΓW = 4γs/M the penetration probability is small and
particles mostly leave the cavity before penetrating. In the both cases just
mentioned the parameter

√

κγs

4M ≪ 1√
M

and the influence of the environment
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in Eq. (13) is negligible. The discussed range becomes maximal, 0 < κ . 1,
when Γs ≈ ΓW . In reality, the spreading width Γs which describes relatively
weak influence of the environment is expected to be much smaller than the
characteristic escape width ΓW if the number of open channels M ≫ 1. But
the adduced arguments show that the role of the considered mechanism of
suppression of the weak localization increases in the case of small number of
open channels, which is the most interesting one from the practical point of
view. It should be stressed that, rigorously, the asymptotic expansions (11,
12) for the weight functions w(Γ ) are not justified [11] in the case of few
number of channels. However, at least qualitatively, our arguments remain
valid.
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