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Abstract— The direct adaptive regulation of nonlinear dy-
namical systems in Brunovsky form with modeling error
effects, is considered in this paper. The method is based
on a new Neuro-Fuzzy Dynamical System definition, which
uses the concept of Fuzzy Adaptive Systems (FAS) operating
in conjunction with High Order Neural Network Functions
(HONNFs). Since the plant is considered unknown, we first
propose its approximation by a special form of a Brunovsky
type fuzzy dynamical system (FDS) assuming also the existence
of disturbance expressed as modeling error terms depending on
both input and system states. The fuzzy rules are then approx-
imated by appropriate HONNFs. This practically transforms
the original unknown system into a neuro-fuzzy model which
is of known structure, but contains a number of unknown
constant value parameters. The development is combined with
a sensitivity analysis of the closed loop in the presence of
modeling imperfections and provides a comprehensive and
rigorous analysis of the stability properties of the closed
loop system. The proposed scheme does not require a-priori
information from the expert on the number and type of input
variable membership functions making it less vulnerable to
initial design assumptions. The existence and boundness of
the control signal is always assured by introducing a novel
method of parameter hopping and incorporating it in weight
updating law. Simulations illustrate the potency of the method
and its applicability is tested on the well known benchmarks
“Inverted Pendulum” and “Van der pol”, where it is shown
that our approach is superior to the case of simple Recurrent
High Order Neural Networks (RHONNs).

I. INTRODUCTION

Nonlinear dynamical systems can be represented by gen-

eral nonlinear dynamical equations of the form

ẋ = f(x, u) (1)

The mathematical description of the system is required,

so that we are able to control it. Unfortunately, the exact

mathematical model of the plant, especially when this is

highly nonlinear and complex, is rarely known and thus

appropriate identification schemes have to be applied which

will provide us with an approximate model of the plant.

It has been established that neural networks and fuzzy

inference systems are universal approximators [1], [2],

[3],i.e., they can approximate any nonlinear function to any

prescribed accuracy provided that sufficient hidden neurons

and training data or fuzzy rules are available. Recently, the

combination of these two different technologies has given

rise to fuzzy neural or neuro fuzzy approaches, that are

intended to capture the advantages of both fuzzy logic and

neural networks. Numerous works have shown the viability

of this approach for system modeling [4] - [12].

The neural and fuzzy approaches are most of the time

equivalent, differing between each other mainly in the struc-

ture of the approximator chosen. Indeed, in order to bridge

the gap between the neural and fuzzy approaches several

researchers introduce adaptive schemes using a class of

parameterized functions that include both neural networks

and fuzzy systems [6] - [12]. Regarding the approximator

structure, linear in the parameters approximators are used in

[10], [13], and nonlinear in [14], [15], [16].

Adaptive control theory has been an active area of re-

search over the past years [17]-[34]. The identification

procedure is an essential part in any control procedure. In the

neuro or neuro fuzzy adaptive control two main approaches

are followed. In the indirect adaptive control schemes [17]

- [19], first the dynamics of the system are identified and

then a control input is generated according to the certainty

equivalence principle. In the direct adaptive control schemes

[20] - [22] the controller is directly estimated and the control

input is generated to guarantee stability without knowledge

of the system dynamics. Also, many researchers focus on

robust adaptive control that guarantees signal boundness in

the presence of modeling errors and bounded disturbances

[23] - [31]. In [32] both direct and indirect approaches are

presented, while in [33],[34] a combined direct and indirect

control scheme is used.

Recently [35], [36], high order neural network func-

tion approximators (HONNFs) have been proposed for the

identification of nonlinear dynamical systems of the form

(1), approximated by a Fuzzy Dynamical System. This

approximation depends on the fact that fuzzy rules could be

identified with the help of HONNFs. The same rationale has



been employed in [37], where a neuro-fuzzy approach for the

indirect control of unknown systems has been introduced.

In this paper HONNFs are also used for the neuro fuzzy

direct control of nonlinear dynamical systems in Brunovsky

canonical form with modeling errors. In the proposed ap-

proach the underlying fuzzy model is of Mamdnani type.

The structure identification is also made off-line based

either on human expertise or on gathered data. However

[38], the required a-priori information obtained by linguistic

information or data is very limited. The only required

information is an estimate of the centers of the output fuzzy

membership functions. Information on the input variable

membership functions and on the underlying fuzzy rules is

not necessary because this is automatically estimated by the

HONNFs. This way the proposed method is less vulnerable

to initial design assumptions. The parameter identification is

then easily addressed by HONNFs, based on the linguistic

information regarding the structural identification of the

output part and from the numerical data obtained from the

actual system to be modeled.

We consider that the nonlinear system can be expressed

in Brunovsky canonical form. We also consider that its

unknown nonlinearities could be approximated with the

help of two independent fuzzy subsystems. We also assume

the existence of disturbance expressed as modeling error

terms depending on both input and system states. Every

fuzzy subsystem is approximated from a family of HON-

NFs, each one being related with a group of fuzzy rules.

Weight updating laws are given and we prove that when

the structural identification is appropriate and the modeling

error terms are within a certain region depending on the

input and state values, then the error reaches zero very fast.

Also, an appropriate state feedback is constructed to achieve

asymptotic regulation of the output, while keeping bounded

all signals in the closed loop.

The paper is organized as follows. Section II presents the

concept of fuzzy systems (FS) description using rule indi-

cator firing functions and reports on the ability of HONNFs

to act as fuzzy rule approximators. The direct neuro fuzzy

regulation of dynamical systems in Brunovsky canonical

form under the presence of modeling errors is presented in

Section III, where the associated weight adaptation laws are

given. Simulation results on the control of the well known

benchmarks “Inverted Pendulum” and “Van der pol” oscil-

lator with the additional comparisons are given in Section

IV, showing that by following the proposed procedure one

can obtain asymptotic regulation in a much better way than

by just simply using RHONN controllers. Finally, Section

V concludes the work.

II. FUZZY SYSTEM DESCRIPTION USING RULE FIRING

INDICATOR FUNCTIONS AND HONNF

In this section, we are briefly introducing the representa-

tion of fuzzy systems using the rule firing indicator functions

(RFIF), or simply indicator functions (IF), which is used for

the development of the proposed method.

Let us consider the system with input space u ⊂ Rm and

state - space x ⊂ Rn , with its i/o relation being governed

by the following equation

z(k) = f(x(k), u(k)) (2)

where f(·) is a continuous function and k denotes the

temporal variable. In case the system is dynamic the above

equation could be replaced by the following differential

equation

ẋ(k) = f(x(k), u(k)) (3)

By setting y(k) = [x(k), u(k)] , Eq. (2) may be rewritten

as follows

z(k) = f (y(k)) (4)

with y ⊂ Rm+n

In case f in (4) is unknown we may wish to approxi-

mate it by using a fuzzy representation. In this case both

y(k) = [x(k), u(k)] and z(k) are initially replaced by fuzzy

linguistic variables. Experts or data depended techniques

may determine the form of the membership functions of

the fuzzy variables and fuzzy rules will determine the fuzzy

relations between y(k) and u(k). Sensor input data, possibly

noisy and imprecise, enter the fuzzy system, are fuzzified,

are processed by the fuzzy rules and the fuzzy implication

engine and are in the sequel defuzzified to produce the

estimated z(k) [2], [3]. We assume here that a Mamdani

type fuzzy system is used.

Let now Ωl1,l2,...,ln
j1,j2,...,jn+m

be defined as the subset of (x, u)

pairs, belonging to the (j1, j2, ..., jn+m)th input fuzzy patch

and pointing - through the vector field f(·) - to the subset of

z(k), which belong to the (j1, j2, ..., jn+m)th output fuzzy

patch. In other words, Ωl1,l2,...,ln
j1,j2,...,jn+m

contains input value

pairs that are associated through a fuzzy rule with output

values.

According to the above notation the Indicator Function

(IF) connected to Ωl1,l2,...,ln
j1,j2,...,jn+m

is defined as follows:

I l1,...,ln
j1,...,jn+m

(x(k), u(k)) =

{

α if (x(k), u(k)) ∈ Ωl1,...,ln
j1,...,jn+m

0 otherwise
(5)

where α denotes the firing strength of the rule.

Define now the following system

z(k) =
∑

z̄l1,...,ln
j1,...,jn+m

× I l1,...,ln
j1,...,jn+m

(x(k), u(k)) (6)

Where z̄l1,...,ln
j1,...,jn+m

∈ Rn be any constant vector consisting

of the centers of the membership functions of each output

variable zi and I l1,...,ln
j1,...,jn+m

(x(k), u(k)) is the IF. Then,

according to [35], [36] the system in (6) is a generator for

the fuzzy system (FS).

It is obvious that Eq. (6) can be also valid for dynamic

systems. In its dynamical form it becomes

ẋ(k) =
∑

x̄l1,...,ln
j1,...,jn+m

× I l1,...,ln
j1,...,jn+m

(x(k), u(k)) (7)



Where x̄l1,...,ln
j1,...,jn+m

∈ Rn be again any constant vector

consisting of the centers of fuzzy partitions of every variable

xi and I l1,...,ln
j1,...,jn+m

(x(k), u(k)) is the IF.

Based on the fact that functions of high order neurons

are capable of approximating discontinuous functions [35]

and [36] use high order neural network functions HONNFs

in order to approximate the IF I l1,...,ln
j1,...,jn+m

. A HONNF is

defined as:

N(x(k), u(k);w,L) =

L
∑

hot=1

whot

∏

j∈Ihot

Φ
dj(hot)
j (8)

where Ihot = {I1, I2, ..., IL} is a collection of L not-

ordered subsets of {1, 2, ..., m+n}, dj(hot) are non-negative

integers, Φj are sigmoid functions of the state or the input,

which are the elements of the following vector

Φ = [ Φ1 . . . Φn Φn+1 . . . Φm+n ]
T

=

= [S(x1) . . . S(xn) S(u1) . . . S(um) ]
T

(9)

where

S(x) = a
1

1 + e−βx
− γ (10)

and w := [w1 · · ·wL]T are the HONNF weights. Eq. (8) can

also be written

N(x(k), u(k);w, L) =

L
∑

hot=1

whotShot(x(k), u(k)) (11)

where Shot(x(k), u(k)) are high order terms of sigmoid

functions of the state and/or input.

III. DIRECT ADAPTIVE NEURO-FUZZY CONTROL

A. Problem formulation and neuro-fuzzy representation

1) Problem formulation: We consider nonlinear dynami-

cal systems of the Brunovski canonical form

ẋ = Acx + bc[f(x) + g(x) · u] (12)

where the state x ∈ Rn is assumed to be completely mea-

sured, the control input u ∈ R, f and g are scalar nonlinear

functions of the state being only involved in the dynamic

equation of xn. Also, Ac =











0 1 0 · · · 0
0 0 1 0 · · ·
· · · · · · 0 · · · 0
0 0 · · · 0 1
0 0 · · · 0 0











and bc = [ 0 · · · 0 1 ]
T

.

The state regulation problem is known as our attempt to

force the state to zero from an arbitrary initial value by

applying appropriate feedback control to the plant input.

However, the problem as it is stated above for the system

(12), is very difficult or even impossible to be solved

since the f , g are assumed to be completely unknown. To

overcome this problem we assume that the unknown plant

can be described by the following model arriving from a

neuro-fuzzy representation described below, plus a modeling

error term ω(x, u)

ẋ = Acx + bc[XW ∗S(x) + X1W
∗
1 S1(x)u + ω(x, u)] (13)

where the weight values W ∗ and W ∗
1n are unknown.

Therefore, the state regulation problem is analyzed for

the system (13) instead of (12). Since, W ∗ and W ∗
1 are

unknown, our solution consists of designing a control law

u(W,W1, x) and appropriate update laws for W and W1

to guarantee convergence of the state to zero and in some

cases, which will be analyzed in the following sections,

boundedness of x and of all signals in the closed loop.

The following mild assumptions are also imposed on (12),

to guarantee the existence and uniqueness of solution for any

finite initial condition and u ∈ U .

Assumption 1: Given a class U of admissible inputs, then

for any u ∈ U and any finite initial condition, the state

trajectories are uniformly bounded for any finite T > 0 .

Hence, |x(T )| < ∞.

Assumption 2: The f, g are continuous with respect to

their arguments and satisfy a local Lipchitz condition so

that the solution x(t) of (12) is unique for any finite initial

condition and u ∈ U .

2) Neuro-fuzzy representation: We are using a fuzzy

approximation of the system in (12), which uses two fuzzy

subsystem blocks for the description of f(x) and g(x) as

follows

f(χ) =
∑

f̄ l1,...,ln
jn

× I l1,...,ln
jn

(χ) (14)

g(χ) =
∑

ḡl1,...,ln
jn

× I1
l1,...,ln
jn

(χ) (15)

where the summation is carried out over the number of

all available fuzzy rules, I, I1 are appropriate IF and the

meaning of indices •l1,...,ln
j1,...,jn

has already been described in

Section II.

According to Section II, every IF can be approximated

with the help of a suitable HONNF. Therefore, every I, I1
can be replaced with a corresponding HONNF as follows

f(χ) =
∑

f̄ l1,...,ln
jn

× N l1,...,ln
jn

(χ) (16)

g(χ) =
∑

ḡl1,...,ln
jn

× N1
l1,...,ln
jn

(χ) (17)

where N, N1 are appropriate HONNFs.

In order to simplify the model structure, since some rules

result to the same output partition, we could replace the

NNs associated to the rules having the same output with one

NN and therefore the summations in (16),(17) are carried

out over the number of the corresponding output partitions.

Therefore, the system of (12) is replaced by the following

equivalent Brunovsky form Fuzzy - Recurrent High Order

Neural Network (F-RHONN), which depends on the centers

of the fuzzy output partitions f̄l and ḡl

˙̂χ = Acχ̂ + bc

[

Npf
∑

l=1

f̄l × Nl(χ) +

(

Npg
∑

l=1

ḡl × N1l(χ)

)

u

]

(18)



where Npf and Npg are the number of fuzzy partitions of

f and g respectively. Or in a more compact form

˙̂χ = Acχ̂ + bc[XWS(χ) + X1W1S1(χ)u] (19)

where X , X1 are matrices containing the centers of the

partitions of every fuzzy output variable of f(x) and g(x)
respectively, S(χ), S1(χ) are matrices containing high order

combinations of sigmoid functions of the state χ and W, W1

are matrices containing respective neural weights according

to (11) and (18). The dimensions and the contents of all

the above matrices are chosen so that both XWS(χ) and

X1W1S1(χ) are scalar. For notational simplicity we also

assume that all output fuzzy variables are partitioned to the

same number, m, of partitions. Under these specifications X
is a 1 × m vector of the form

X = [ f̄1 f̄2 · · · f̄m ]

where f̄p denotes the center or the fuzzy p-th parti-

tion of f . These centers can be determined manually or

automatically with the help of a fuzzy c-means cluster-

ing algorithm as a part of the off-line structural iden-

tification procedure mentioned in the introduction. Also,

S(χ) = [ s1(χ) . . . sk(χ) ]
T

, where each si(χ) with

i = {1, 2, ..., k}, is a high order combination of sigmoid

functions of the state variables and W is a m × k matrix

with neural weights. W can be also written as a collection

of column vectors W l, that is W = [ W 1W 2 · · · W l ],
where l = 1, 2, ..., k. Similarly, X1 is a 1 · m raw vector of

the form

X1 = [ ḡ1 ḡ2 · · · ḡm ],

where ḡk denotes the center or the k-th partition of g. W1,

S1(χ) have the same dimensions as W , S(χ) respectively.

B. Adaptive regulation with modeling error effects

In this subsection we present a solution to the adaptive

regulation problem and investigate the modeling error effects

when the dynamical equations have the Brunovski canonical

form. Assuming the presence of modeling error the unknown

system can be written as (13). The regulation of the system

can be achieved by selecting the control input to be

u = −
XWS(χ) + υ

X1W1S1(χ)
(20)

with

υ = kx (21)

where k is a vector of the form k = [kn · · · k2 k1] ∈ Rn be

such that all roots of the polynomial h(s) = sn + k1s
n−1 +

· · · + kn are in the open left half-plane.

Define now, the regulation error as

ξ = −x (22)

After substituting Eq. (20) to the n − th state equation of

Eq. (13) and straightforward manipulations we have that

ẋ = −Λcx+ bc[XW̃S(χ)+X1W̃1S1(χ)u−ω(x, u)] (23)

where Λc = Ac − bck is a matrix with its eigenvalues on

the left half plane. W̃ = W − W ∗ and W̃1 = W1 − W ∗
1 .

W and W1 are estimates of W ∗ and W ∗
1 respectively and

are obtained by update laws which are to be designed in the

sequel. After substituting Eq. (22), (23) becomes

ξ̇ = Λcξ + bc[XW̃S(χ) + X1W̃1S1(χ)u − ω(x, u)] (24)

To continue, consider the Lyapunov candidate function

V =
1

2
ξT Pξ +

1

2γ1
tr

{

W̃T W̃
}

+
1

2γ2
tr

{

W̃T
1 W̃1

}

(25)

Where P > 0 is chosen to satisfy the Lyapunov equation

PΛc + ΛT
c P = −I

If we take the derivative of Eq. (25) with respect to time we

obtain

V̇ = − 1
2 ‖ξ‖

2
+

+ξT PbcXW̃S(x) + ξT PbcX1W̃1S1(x)u−

−ξT Pbcω(x, u) + 1
γ1

tr
{

˙̃WT W̃
}

+ 1
γ2

tr
{

˙̃WT
1 W̃1

}

Hence, if we choose

tr
{

˙̃WT W̃
}

= −γ1ξ
T PbcXW̃S(x) (26)

tr
{

˙̃WT
1 W̃1

}

= −γ2ξ
T PbcX1W̃1S1(x)u (27)

V̇ becomes

V̇ ≤ −
1

2
‖ξ‖

2
+ ‖ξ‖ ‖Pbc‖ ‖ω(x, u)‖ (28)

It can be easily verified that Eqs. (26) and (27) after making

the appropriate operations, result in the following weight

updating laws

Ẇ = −γ1X
T bT

c PξST (x) (29)

Ẇ1 = −γ2X
T
1 bT

c PξST
1 (x)u (30)

where ξ is the vector defined in (22), u is a scalar and γ1,

γ2 are positive constants expressing the learning rates.

The above equations can be also element wise written as:

a) for the elements of W

ẇjl = −γ1f̄jpnξsl(x) (31)

or equivalently Ẇ l = −γ1 (X)
T

pnξsl(x) for all l =
1, 2, ..., k and j = 1, 2, ...,m. Also, pn is the last (nth) row

of P .

b) for the elements of W1

ẇjl = −γ2ḡjpnξus1l(x) (32)

or equivalently Ẇ l
1 = −γ2 (X1)

T
pnξus1l(x) for all l =

1, 2, ..., k and j = 1, 2, ..., m.

Furthermore, we can make the following assumption.

Assumption 3: The modeling error term satisfies

| ω(x, u) |≤ ℓ′1 |x| + ℓ′′1 |u|
where ℓ′1 and ℓ′′1 are known positive constants.



Also, we can find an a priori known constant ℓu > 0,

such that

|u| ≤ ℓu |x|

and Assumption 3 becomes equivalent to

|ω (x)| ≤ ℓ1 |x| (33)

where

ℓ1 = ℓ′1 + ℓ′′1ℓu (34)

is a positive constant. Employing Assumption 3, Eq. (28)

becomes

V̇ ≤ −
1

2
‖ξ‖

2
+ ℓ1 ‖ξ‖ ‖Pbc‖ ‖x‖ (35)

since ‖x‖ = ‖ξ‖ then Eq. (35) becomes

V̇ ≤ − 1
2 ‖ξ‖

2
+ ℓ1 ‖Pbc‖ ‖ξ‖

2
=

= −

(

1

2
− ℓ1 ‖Pbc‖

)

‖ξ‖
2

(36)

Hence, if we chose ‖Pbc‖ < 1
2ℓ1

then the Lapyunov

candidate function becomes negative.

We are now ready to prove the following theorem

Theorem 1: The control law (20) and (21) together with

the update laws (29) and (30) guarantee the following

properties

• ξ, x, W,W1 ∈ L∞

• limt→∞ ξ(t) = 0, limt→∞ x(t) = 0

• limt→∞ Ẇ (t) = 0, limt→∞ Ẇ1(t) = 0

provided that ‖P‖ < 1
2ℓ1

and Assumption 3 is satisfied.

Proof: From Eq. (36) we have that V ∈ L∞ which

implies ξ, W̃ , W̃1 ∈ L∞. Furthermore W = W̃ + W ∗ ∈
L∞ and W1 = W̃1 + W1

∗ ∈ L∞. Since ξ ∈ L∞ this

also implies x ∈ L∞. Moreover, since V is a monotone

decreasing function of time and bounded from below, the

limt→∞ V (t) = V∞ exists so by integrating V̇ from 0 to ∞
we have

∫ ∞

0
|ξ|

2
dt ≤ 1

1
2
−l1|Pbc|

[V (0) − V∞] < ∞

which implies that |ξ| ∈ L2. We also have that

ξ̇ = Λcξ + bc[XW̃S(χ) + X1W̃1S1(χ)u − ω(x, u)]

Hence and since u, ξ̇ ∈ L∞, the sigmoidals are bounded by

definition, W̃ , W̃1 ∈ L∞ and Assumption 3 hold, so since

ξ ∈ L2 ∩ L∞ and ξ̇ ∈ L∞, applying Barbalat’s Lemma we

conclude that limt→∞ ξ(t) = 0.

Now, using the boundedness of u, S(x), S1(x), x and

the convergence of ξ(t) to zero, we have that Ẇ , Ẇ1 also

converge to zero. Hence we have that

limt→∞ x(t) = − limt→∞ ξ(t) = 0

Thus,

limt→∞ x(t) = 0.

Remark 1: We can’t conclude anything about the conver-

gence of the synaptic weights W and W1 to their optimum

values W ∗ and W ∗
1 respectively from the above analysis.

The existence of signal u is associated with conditions

which guarantee that X1W1S1 6= 0. It can be shown

that using appropriate projection method [22], the weight

updating laws can be modified so that the existence of the

control signal can be assured. However, this development is

not presented in this paper due to lack of space. The relevant

results along with the ones given here are to be presented

shortly in a forthcoming work.

IV. SIMULATION RESULTS

To demonstrate the potency of the proposed scheme we

present two simulation results. One of them is the well

known benchmark “Inverted Pendulum” and the other “Van

der pol” oscillator. Both of them present comparisons of

the proposed method with the well established approach on

the use of RHONN’s [41]. The comparison shows off the

regulation superiority of our method under the presence of

modeling errors.

A. Inverted Pendulum

Let the well known problem of the control of an inverted

pendulum. Its dynamical equations can assume the following

Brunovsky canonical form [40]

ẋ1 = x2

ẋ2 =
g sin x1−

mlx2
2

cos x1 sin x1

mC+m

l

(

4
3
−

m cos2 x1
mC+m

) +
cosx1

mC+m

l

(

4
3
−

m cos2 x1
mC+m

)u + d

with d = 5x2 + 10sin(10x2) + sin(2u) (37)

where x1 = θ and x2 = θ̇ are the angle from the vertical

position and the angular velocity respectively. Also, g =
9.8 m/s2 is the acceleration due to gravity, mc is the mass

of the cart, m is the mass of the pole, and l is the half-

length of the pole. We choose mc = 1 kg, m = 0.1 kg, and

l = 0.5 m in the following simulation. In this case we also

have that |x1| ≤ π/6 and |x2| ≤ π/6.

It is our intention to compare the direct control abilities

of the proposed Neuro-Fuzzy approach with RHONN’s

[41] (page 62-71). We also, make the appropriate changes

to RHONN’s in order to be equivalent with F-HONNF’s

(brunovski form) for comparison purposes.

For the proposed F-HONNF approach we use the adaptive

laws which are described by Eqs. (29) and (30) and the

control law described by Eqs. (20) and (21). Numerical

training data were obtained by using Eq. (37) with initial

conditions [ x1(0) x2(0) ] = [− π
12 0 ] and sampling time

10−3 sec.

We are using the proposed approach with Eq. (19) to

approximate Inverted Pendulum dynamics and send data to

sigmoidal terms. Our Neuro-Fuzzy model was chosen to

use 5 output partitions of f and 5 output partitions of g.

The number of high order sigmoidal terms (HOST) used in



HONNF’s (for F-HONNF and RHONN) were chosen to be

5 (s(x1), s(x2), s(x1) · s(x2), s
2(x1), s

2(x2)).

In order our model to be equivalent with RHONN’s

regarding to other parameters except the initial weights

(W (0) = 0 and W1(0) = 1 for FHONNF and W (0) = 0 and

W1(0) = 0.016 for RHONN) we have chosen the updating

learning rates γ1 = 5 and γ2 = 1 and the parameters of the

sigmoidal terms such as a1 = 0.1, a2 = 3, b1 = b2 = 1
and c1 = c2 = 0. Also, k1 = 2 and k2 = 80 after careful

selection. Fig. (1) shows the regulation of states x1 (with

blue line for F-HONNF corresponding approach and red line

for RHONN’s) and x2 while fig. (2) gives the evolution of

control input u, the errors e1, e2 and the modeling error

d(x2, u) respectively.
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Fig. 1. Evolution of state variable x1 and x2 for RHONN’s (red line) and
F-HONNF approach (blue line)
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Fig. 2. Evolution of control input u and disturbance d for RHONN’s (red
line) and F-HONNF approach (blue line)

The mean squared error (MSE) for RHONN and F-

HONNF approaches were measured and are shown in

Table I, demonstrating a significant (order of magnitude)

increase in the regulation performance of F-HONNF against

RHONN’s.

B. Van der pol

Van der Pol oscillator is usually used as a simple bench-

mark problem for testing control schemes. It’s dynamical

equations are given by

ẋ1 = x2

ẋ2 = x2 ·
(

a − x2
1

)

· b − x1 + u + d

with d = 2x2 + 4sin(5x2) + 5sin(10u) (38)

The procedure of the approximation was the same as that

of Inverted Pendulum.

The proposed Neuro-Fuzzy model was chosen to have

initial conditions, [ x1(0) x2(0) ] = [ 0.4 0.5 ] and the

number of high order sigmoidal terms (HOST) used in

HONNF’s (for F-HONNF and RHONN) were chosen to be

2 (s(x1), s(x2). In order our model to be equivalent with

RHONN’s regarding to other parameters except the initial

weights (W (0) = 0 and W1(0) = 0.1 for FHONNF and

W (0) = 0 and W1(0) = 0.05 for RHONN) we have chosen

the updating learning rates γ1 = 0.1 and γ2 = 10 and the

parameters of the sigmoidal terms such as a1 = 0.1, a2 = 4,

b1 = b2 = 1 and c1 = c2 = 0. Also, k1 = 2 and k2 = 80
after careful selection. Fig. (3) shows the regulation of states

x1 and x2, while fig. (4) presents the evolution of control

input u, the errors e1, e2 and modeling error d.

0 0.5 1 1.5 2 2.5 3
−0.4

−0.2

0

0.2

0.4

0.6

S
ta

te
 x

1

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

Time (sec)

S
ta

te
 x

2

Fig. 3. Evolution of state variable x1 and x2 for RHONN’s (red line) and
F-HONNF approach (blue line)

The mean squared error (MSE) for RHONN and F-

HONNF approaches were measured and are shown in Ta-

ble I demonstrating as before (Inverted Pendulum case),

a significant (order of magnitude) increase in the control

performance.
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line) and F-HONNF approach (blue line)

TABLE I

COMPARISON OF RHONN’S AND F-HONNF APPROACHES FOR THE

INVERTED PENDULUM AND VAN DER POL OSCILLATOR.

Examples RHONN FHONNF

Inverted Pendulum MSEx1 0.0010 6.0794 · 10
−4

MSEx2 0.9252 0.3368

Van der pol MSEx1 0.0024 9.5226 · 10
−4

MSEx2 0.8417 0.5930

Conclusively, the comparison between RHONN and F-

HONNF’s leads to a superiority of F-HONNF’s regarding

the control abilities. Especially, if we choose smaller learn-

ing rate and reduce the number of high order terms, then the

difference between the two methods is huge.

V. CONCLUSIONS

A direct adaptive control scheme was considered in this

paper, aiming at the regulation of non linear unknown

plants of Brunovsky canonical form with the presence of

modeling errors. The approach is based on a new Neuro-

Fuzzy Dynamical Systems definition, which uses the concept

of Fuzzy Adaptive Systems (FAS) operating in conjunction

with High Order Neural Network Functions (F-HONNFs).

Since the plant is considered unknown, we first propose

its approximation by a special form of a Brunovsky type

fuzzy dynamical system (FDS) where the fuzzy rules are

approximated by appropriate HONNFs. This practically

transforms the original unknown system into a neuro-fuzzy

model which is of known structure, but contains a number

of unknown constant value parameters known as synaptic

weights. The proposed scheme does not require a-priori

experts’ information on the number and type of input

variable membership functions making it less vulnerable to

initial design assumptions. Weight updating laws for the

involved HONNFs are provided, which guarantee that the

system states reach zero exponentially fast, while keeping

all signals in the closed loop bounded. Simulations illustrate

the potency of the method while the applicability is tested on

well known benchmarks where it is shown that by following

the proposed procedure one can obtain asymptotic regulation

quite well. Compared to simple RHONN’s direct control,

proves to be superior.
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